Magnetic phases of bilayer quantum-dot Hubbard model plaquettes

被引:5
作者
Buterakos, Donovan [1 ,2 ]
Das Sarma, Sankar [1 ,2 ]
机构
[1] Univ Maryland, Condensed Matter Theory Ctr, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
关键词
DISCRETE LOGARITHMS; SINGLE-ELECTRON; GROUND-STATES; FERROMAGNETISM; COMPUTATION; ALGORITHMS; NARROW;
D O I
10.1103/PhysRevB.108.235301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It has been demonstrated that small plaquettes of quantum dot spin qubits are capable of simulating condensed matter phenomena that arise from the Hubbard model, such as the collective Coulomb blockade and Nagaoka ferromagnetism. Motivated by recent materials developments, we investigate a bilayer arrangement of quantum dots with four dots in each layer which exhibits a complex ground state behavior. We find using a generalized Hubbard model with long-range Coulomb interactions, several distinct magnetic configurations occur as the Coulomb interaction strength is varied, with possible ground states that are ferromagnetic, antiferromagnetic, or having both one antiferromagnetic and one ferromagnetic layer. We map out the full phase diagram of the system as it depends on the inter-and intralayer Coulomb interaction strengths, and find that for a single layer, a similar but simpler effect occurs. We also predict interesting contrasts among electron, hole, and electron-hole bilayer systems arising from complex correlation physics. Observing the predicted magnetic configuration in already-existing few-dot semiconductor bilayer structures could prove to be an important assessment of current experimental quantum dot devices, particularly in the context of spin-qubit-based analog quantum simulations.
引用
收藏
页数:8
相关论文
共 42 条
[1]   A cold-atom Fermi-Hubbard antiferromagnet [J].
Azurenko, Anton M. ;
Chiu, Christie S. ;
Ji, Geoffrey ;
Parsons, Maxwell F. ;
Kanasz-Nagy, Marton ;
Schmidt, Richard ;
Grusdt, Fabian ;
Demler, Eugene ;
Greif, Daniel ;
Greiner, Markus .
NATURE, 2017, 545 (7655) :462-+
[2]  
Borsoi F, 2022, Arxiv, DOI arXiv:2209.06609
[3]   Tuning Methods for Semiconductor Spin Qubits [J].
Botzem, Tim ;
Shulman, Michael D. ;
Foletti, Sandra ;
Harvey, Shannon P. ;
Dial, Oliver E. ;
Bethke, Patrick ;
Cerfontaine, Pascal ;
McNeil, Robert P. G. ;
Mahalu, Diana ;
Umansky, Vladimir ;
Ludwig, Arne ;
Wieck, Andreas ;
Schuh, Dieter ;
Bougeard, Dominique ;
Yacoby, Amir ;
Bluhm, Hendrik .
PHYSICAL REVIEW APPLIED, 2018, 10 (05)
[4]  
Burkard G, 2023, REV MOD PHYS, V95, DOI [10.1103/RevModPhys.95.025003, 10.1103/RevModphys.95.025003]
[5]   Certain exact many-body results for Hubbard model ground states testable in small quantum dot arrays [J].
Buterakos, Donovan ;
Das Sarma, Sankar .
PHYSICAL REVIEW B, 2023, 107 (01)
[6]   Ferromagnetism in quantum dot plaquettes [J].
Buterakos, Donovan ;
Das Sarma, Sankar .
PHYSICAL REVIEW B, 2019, 100 (22)
[7]   Semiconductor qubits in practice [J].
Chatterjee, Anasua ;
Stevenson, Paul ;
De Franceschi, Silvano ;
Morello, Andrea ;
de Leon, Nathalie P. ;
Kuemmeth, Ferdinand .
NATURE REVIEWS PHYSICS, 2021, 3 (03) :157-177
[8]   Hubbard model description of silicon spin qubits: Charge stability diagram and tunnel coupling in Si double quantum dots [J].
Das Sarma, S. ;
Wang, Xin ;
Yang, Shuo .
PHYSICAL REVIEW B, 2011, 83 (23)
[9]   Nagaoka ferromagnetism observed in a quantum dot plaquette [J].
Dehollain, J. P. ;
Mukhopadhyay, U. ;
Michal, V. P. ;
Wang, Y. ;
Wunsch, B. ;
Reichl, C. ;
Wegscheider, W. ;
Rudner, M. S. ;
Demler, E. ;
Vandersypen, L. M. K. .
NATURE, 2020, 579 (7800) :528-533
[10]  
DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO