Engineering chirality at wafer scale with ordered carbon nanotube architectures

被引:18
作者
Doumani, Jacques [1 ,2 ,3 ]
Lou, Minhan [3 ]
Dewey, Oliver [4 ,5 ]
Hong, Nina [6 ]
Fan, Jichao [3 ]
Baydin, Andrey [1 ,7 ]
Zahn, Keshav [1 ]
Yomogida, Yohei [8 ]
Yanagi, Kazuhiro [8 ]
Pasquali, Matteo [4 ,5 ,7 ,9 ,10 ]
Saito, Riichiro [8 ,11 ,12 ]
Kono, Junichiro [1 ,4 ,7 ,10 ,13 ]
Gao, Weilu [3 ,4 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX USA
[2] Rice Univ, Smalley Curl Inst, Appl Phys Grad Program, Houston, TX USA
[3] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA
[4] Rice Univ, Carbon Hub, Houston, TX 77005 USA
[5] Rice Univ, Dept Chem & Biomol Engn, Houston, TX USA
[6] JA Woollam Co Inc, Lincoln, NE USA
[7] Rice Univ, Smalley Curl Inst, Houston, TX USA
[8] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan
[9] Rice Univ, Dept Chem, Houston, TX USA
[10] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX USA
[11] Tohoku Univ, Dept Phys, Sendai, Japan
[12] Natl Taiwan Normal Univ, Dept Phys, Taipei, Taiwan
[13] Rice Univ, Dept Phys & Astron, Houston, TX USA
基金
美国国家科学基金会;
关键词
FILMS; SPECTROSCOPY; DETECTORS;
D O I
10.1038/s41467-023-43199-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Creating artificial matter with controllable chirality in a simple and scalable manner brings new opportunities to diverse areas. Here we show two such methods based on controlled vacuum filtration - twist stacking and mechanical rotation - for fabricating wafer-scale chiral architectures of ordered carbon nanotubes (CNTs) with tunable and large circular dichroism (CD). By controlling the stacking angle and handedness in the twist-stacking approach, we maximize the CD response and achieve a high deep-ultraviolet ellipticity of 40 +/- 1 mdeg nm-1. Our theoretical simulations using the transfer matrix method reproduce the experimentally observed CD spectra and further predict that an optimized film of twist-stacked CNTs can exhibit an ellipticity as high as 150 mdeg nm-1, corresponding to a g factor of 0.22. Furthermore, the mechanical rotation method not only accelerates the fabrication of twisted structures but also produces both chiralities simultaneously in a single sample, in a single run, and in a controllable manner. The created wafer-scale objects represent an alternative type of synthetic chiral matter consisting of ordered quantum wires whose macroscopic properties are governed by nanoscopic electronic signatures and can be used to explore chiral phenomena and develop chiral photonic and optoelectronic devices. Methods for generating macroscopic chiral matter struggle with limited scalability. Here, the authors show two vacuum filtration methods - twist stacking and mechanical rotation - to align carbon nanotubes into chiral structures at wafer scale with tunable circular dichroism.
引用
收藏
页数:11
相关论文
共 57 条
[1]   A Chirality-Based Quantum Leap [J].
Aiello, Clarice D. ;
Abendroth, John M. ;
Abbas, Muneer ;
Afanasev, Andrei ;
Agarwal, Shivang ;
Banerjee, Amartya S. ;
Beratan, David N. ;
Belling, Jason N. ;
Berche, Bertrand ;
Botana, Antia ;
Caram, Justin R. ;
Celardo, Giuseppe Luca ;
Cuniberti, Gianaurelio ;
Garcia-Etxarri, Aitzol ;
Dianat, Arezoo ;
Diez-Perez, Ismael ;
Guo, Yuqi ;
Gutierrez, Rafael ;
Herrmann, Carmen ;
Hihath, Joshua ;
Kale, Suneet ;
Kurian, Philip ;
Lai, Ying-Cheng ;
Liu, Tianhan ;
Lopez, Alexander ;
Medina, Ernesto ;
Mujica, Vladimiro ;
Naaman, Ron ;
Noormandipour, Mohammadreza ;
Palma, Julio L. ;
Paltiel, Yossi ;
Petuskey, William ;
Ribeiro-Silva, Joao Carlos ;
Saenz, Juan Jose ;
Santos, Elton J. G. ;
Solyanik-Gorgone, Maria ;
Sorger, Volker J. ;
Stemer, Dominik M. ;
Ugalde, Jesus M. ;
Valdes-Curiel, Ana ;
Varela, Solmar ;
Waldeck, David H. ;
Wasielewski, Michael R. ;
Weiss, Paul S. ;
Zacharias, Helmut ;
Wang, Qing Hua .
ACS NANO, 2022, 16 (04) :4989-5035
[2]   Chiroptical Properties in Thin Films of π-Conjugated Systems [J].
Albano, Gianluigi ;
Pescitelli, Gennaro ;
Di Bari, Lorenzo .
CHEMICAL REVIEWS, 2020, 120 (18) :10145-10243
[3]   Optical Chirality Determined from Mueller Matrices [J].
Arwin, Hans ;
Schoeche, Stefan ;
Hilfiker, James ;
Hartveit, Mattias ;
Jarrendahl, Kenneth ;
Juarez-Rivera, Olga Rubi ;
Mendoza-Galvan, Arturo ;
Magnusson, Roger .
APPLIED SCIENCES-BASEL, 2021, 11 (15)
[4]  
Barron L. D., 2009, Molecular light scattering and optical activity
[5]   Nanophotonic Chiral Sensing: How Does It Actually Work? [J].
Both, Steffen ;
Schaeferling, Martin ;
Sterl, Florian ;
Muljarov, Egor A. ;
Giessen, Harald ;
Weiss, Thomas .
ACS NANO, 2022, 16 (02) :2822-2832
[6]   Chiral Single-Photon Generators [J].
Chen, Disheng ;
He, Ruihua ;
Cai, Hongbing ;
Liu, Xiaogang ;
Gao, Weibo .
ACS NANO, 2021, 15 (02) :1912-1916
[7]   Chiroptical Response of Aluminum Nanocrescents at Ultraviolet Wavelengths [J].
Davis, Matthew S. ;
Zhu, Wenqi ;
Strait, Jared ;
Lee, Jay K. ;
Lezec, Henri J. ;
Blair, Steve ;
Agrawal, Amit .
NANO LETTERS, 2020, 20 (05) :3656-3662
[8]  
Dresselhaus M. S., 2001, CARBON NANOTUBES SYN
[9]   Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration [J].
Gao, Weilu ;
Kono, Junichiro .
ROYAL SOCIETY OPEN SCIENCE, 2019, 6 (03)
[10]   High-Performance Circularly Polarized Light-Sensing Near-Infrared Organic Phototransistors for Optoelectronic Cryptographic Primitives [J].
Han, Hyemi ;
Lee, Yoo Jin ;
Kyhm, Jihoon ;
Jeong, Jae Seung ;
Han, Jae-Hoon ;
Yang, Min Kyu ;
Lee, Kyung Min ;
Choi, Yeongyu ;
Yoon, Tae-Hoon ;
Ju, Hyunsu ;
Ahn, Suk-kyun ;
Lim, Jung Ah .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (52)