Scale-free avalanches in arrays of FitzHugh-Nagumo oscillators

被引:10
作者
Contreras, Max [1 ]
Medeiros, Everton S. [2 ]
Zakharova, Anna [1 ,3 ]
Hoevel, Philipp [4 ]
Franovic, Igor [5 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Chem & Biol Marine Environm, D-26111 Oldenburg, Germany
[3] Humboldt Univ, Bernstein Ctr Computat Neurosci, Philippstr 13, D-10115 Berlin, Germany
[4] Saarland Univ, Theoret Phys & Ctr Biophys, Campus E2 6, D-66123 Saarbrucken, Germany
[5] Univ Belgrade, Inst Phys Belgrade, Ctr Study Complex Syst, Sci Comp Lab, Pregrevica 118, Belgrade 11080, Serbia
关键词
SELF-ORGANIZED CRITICALITY; NEURONAL AVALANCHES; CORTICAL NETWORKS; DYNAMICS; PATTERNS; EMERGE; RANGE;
D O I
10.1063/5.0165778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The activity in the brain cortex remarkably shows a simultaneous presence of robust collective oscillations and neuronal avalanches, where intermittent bursts of pseudo-synchronous spiking are interspersed with long periods of quiescence. The mechanisms allowing for such coexistence are still a matter of an intensive debate. Here, we demonstrate that avalanche activity patterns can emerge in a rather simple model of an array of diffusively coupled neural oscillators with multiple timescale local dynamics in the vicinity of a canard transition. The avalanches coexist with the fully synchronous state where the units perform relaxation oscillations. We show that the mechanism behind the avalanches is based on an inhibitory effect of interactions, which may quench the spiking of units due to an interplay with the maximal canard. The avalanche activity bears certain heralds of criticality, including scale-invariant distributions of event sizes. Furthermore, the system shows increased sensitivity to perturbations, manifested as critical slowing down and reduced resilience.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A fractional-order improved FitzHugh-Nagumo neuron model
    Kumar, Pushpendra
    Erturk, Vedat Suat
    CHINESE PHYSICS B, 2025, 34 (01)
  • [32] Deconstructing scale-free neuronal avalanches: behavioral transitions and neuronal response
    Curic, Davor
    Ivan, Victorita E.
    Cuesta, David T.
    Esteves, Ingrid M.
    Mohajerani, Majid H.
    Gruber, Aaron J.
    Davidsen, Jorn
    JOURNAL OF PHYSICS-COMPLEXITY, 2021, 2 (04):
  • [33] Time Fractional Fisher-KPP and Fitzhugh-Nagumo Equations
    Angstmann, Christopher N.
    Henry, Bruce I.
    ENTROPY, 2020, 22 (09)
  • [34] Synchronization of Fitzhugh-Nagumo Neural Network in External Electrical Fields
    Men Cong
    Wang Jiang
    Deng Bin
    Wei Xi-Le
    Che Yan-Qiu
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 5165 - 5170
  • [35] Sub-threshold signal encoding in coupled FitzHugh-Nagumo neurons
    Masoliver, Maria
    Masoller, Cristina
    SCIENTIFIC REPORTS, 2018, 8
  • [36] Global Identification of FitzHugh-Nagumo Equation via Deterministic Learning and Interpolation
    Dong, Xunde
    Si, Wenjie
    Wang, Cong
    IEEE ACCESS, 2019, 7 : 107334 - 107345
  • [37] Dynamics of array mechanical arms coupled each to a Fitzhugh-Nagumo neuron
    Mbeunga, N. K.
    Nana, B.
    Woafo, P.
    CHAOS SOLITONS & FRACTALS, 2021, 153
  • [38] Planar Radial Spots in a Three-Component FitzHugh-Nagumo System
    van Heijster, Peter
    Sandstede, Bjoern
    JOURNAL OF NONLINEAR SCIENCE, 2011, 21 (05) : 705 - 745
  • [39] Order parameters and synchronization of FitzHugh-Nagumo small-world networks
    Li Yan-Long
    Ma Jun
    Zhang Wei
    Liu Yan-Jun
    CHINESE PHYSICS B, 2009, 18 (10) : 4598 - 4602
  • [40] A correspondence between the models of Hodgkin-Huxley and FitzHugh-Nagumo revisited
    Postnikov, Eugene B.
    Titkova, Olga V.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (11):