Scale-free avalanches in arrays of FitzHugh-Nagumo oscillators

被引:10
作者
Contreras, Max [1 ]
Medeiros, Everton S. [2 ]
Zakharova, Anna [1 ,3 ]
Hoevel, Philipp [4 ]
Franovic, Igor [5 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Chem & Biol Marine Environm, D-26111 Oldenburg, Germany
[3] Humboldt Univ, Bernstein Ctr Computat Neurosci, Philippstr 13, D-10115 Berlin, Germany
[4] Saarland Univ, Theoret Phys & Ctr Biophys, Campus E2 6, D-66123 Saarbrucken, Germany
[5] Univ Belgrade, Inst Phys Belgrade, Ctr Study Complex Syst, Sci Comp Lab, Pregrevica 118, Belgrade 11080, Serbia
关键词
SELF-ORGANIZED CRITICALITY; NEURONAL AVALANCHES; CORTICAL NETWORKS; DYNAMICS; PATTERNS; EMERGE; RANGE;
D O I
10.1063/5.0165778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The activity in the brain cortex remarkably shows a simultaneous presence of robust collective oscillations and neuronal avalanches, where intermittent bursts of pseudo-synchronous spiking are interspersed with long periods of quiescence. The mechanisms allowing for such coexistence are still a matter of an intensive debate. Here, we demonstrate that avalanche activity patterns can emerge in a rather simple model of an array of diffusively coupled neural oscillators with multiple timescale local dynamics in the vicinity of a canard transition. The avalanches coexist with the fully synchronous state where the units perform relaxation oscillations. We show that the mechanism behind the avalanches is based on an inhibitory effect of interactions, which may quench the spiking of units due to an interplay with the maximal canard. The avalanche activity bears certain heralds of criticality, including scale-invariant distributions of event sizes. Furthermore, the system shows increased sensitivity to perturbations, manifested as critical slowing down and reduced resilience.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture
    Plotnikov, S. A.
    Lehnert, J.
    Fradkov, A. L.
    Schoell, E.
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [22] Input signal accumulation capability of the FitzHugh-Nagumo neuron
    Bukh, A. V.
    Shepelev, I. A.
    Vadivasova, T. E.
    CHAOS, 2024, 34 (12)
  • [23] SPLITTING SCHEMES FOR FITZHUGH-NAGUMO STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
    Brehier, Charles-Edouard
    Cohen, David
    Giordano, Giuseppe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (01): : 214 - 244
  • [24] Pattern selection in the 2D FitzHugh-Nagumo model
    Gambino, G.
    Lombardo, M. C.
    Rubino, G.
    Sammartino, M.
    RICERCHE DI MATEMATICA, 2019, 68 (02) : 535 - 549
  • [25] Spiking control by means of "phase feedback" in FitzHugh-Nagumo circuits
    Meucci, R.
    Euzzor, S.
    Geltrude, A.
    Al-Naimee, K.
    De Nicola, S.
    Arecchi, F. T.
    PHYSICS LETTERS A, 2012, 376 (6-7) : 834 - 838
  • [26] CONCENTRATION PROFILES IN FITZHUGH-NAGUMO NEURAL NETWORKS: A HOPF-COLE APPROACH
    Blaustein, Alain
    Bouin, Emeric
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (04): : 2018 - 2042
  • [27] α-stable noise-induced coherence on a spatially extended Fitzhugh-Nagumo system
    Wang, Zhanqing
    Xu, Yong
    Li, Yongge
    Kurths, Juergen
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (10):
  • [28] On Propagation of Excitation Waves in Moving Media: The FitzHugh-Nagumo Model
    Ermakova, Elena A.
    Shnol, Emmanuil E.
    Panteleev, Mikhail A.
    Butylin, Andrey A.
    Volpert, Vitaly
    Ataullakhanov, Fazoil I.
    PLOS ONE, 2009, 4 (02):
  • [29] Hopf bifurcations on invariant manifolds of a modified Fitzhugh-Nagumo model
    Tah, Forwah Amstrong
    Tabi, Conrad Bertrand
    Kofane, Timoleon Crepin
    NONLINEAR DYNAMICS, 2020, 102 (01) : 311 - 327
  • [30] Identification of the FitzHugh-Nagumo Model Dynamics via Deterministic Learning
    Dong, Xunde
    Wang, Cong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (12):