Scale-free avalanches in arrays of FitzHugh-Nagumo oscillators

被引:10
作者
Contreras, Max [1 ]
Medeiros, Everton S. [2 ]
Zakharova, Anna [1 ,3 ]
Hoevel, Philipp [4 ]
Franovic, Igor [5 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Chem & Biol Marine Environm, D-26111 Oldenburg, Germany
[3] Humboldt Univ, Bernstein Ctr Computat Neurosci, Philippstr 13, D-10115 Berlin, Germany
[4] Saarland Univ, Theoret Phys & Ctr Biophys, Campus E2 6, D-66123 Saarbrucken, Germany
[5] Univ Belgrade, Inst Phys Belgrade, Ctr Study Complex Syst, Sci Comp Lab, Pregrevica 118, Belgrade 11080, Serbia
关键词
SELF-ORGANIZED CRITICALITY; NEURONAL AVALANCHES; CORTICAL NETWORKS; DYNAMICS; PATTERNS; EMERGE; RANGE;
D O I
10.1063/5.0165778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The activity in the brain cortex remarkably shows a simultaneous presence of robust collective oscillations and neuronal avalanches, where intermittent bursts of pseudo-synchronous spiking are interspersed with long periods of quiescence. The mechanisms allowing for such coexistence are still a matter of an intensive debate. Here, we demonstrate that avalanche activity patterns can emerge in a rather simple model of an array of diffusively coupled neural oscillators with multiple timescale local dynamics in the vicinity of a canard transition. The avalanches coexist with the fully synchronous state where the units perform relaxation oscillations. We show that the mechanism behind the avalanches is based on an inhibitory effect of interactions, which may quench the spiking of units due to an interplay with the maximal canard. The avalanche activity bears certain heralds of criticality, including scale-invariant distributions of event sizes. Furthermore, the system shows increased sensitivity to perturbations, manifested as critical slowing down and reduced resilience.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] On a Kinetic Fitzhugh-Nagumo Model of Neuronal Network
    Mischler, S.
    Quininao, C.
    Touboul, J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (03) : 1001 - 1042
  • [12] Control of spiral waves in FitzHugh-Nagumo systems
    Gao Jia-Zhen
    Xie Ling-Ling
    Xie Wei-Miao
    Gao Ji-Hua
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [13] Traveling pulse solutions to FitzHugh-Nagumo equations
    Chen, Chao-Nien
    Choi, Y. S.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 1 - 45
  • [14] FitzHugh-Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena
    Gerster, Moritz
    Berner, Rico
    Sawicki, Jakub
    Zakharova, Anna
    Skoch, Antonin
    Hlinka, Jaroslav
    Lehnertz, Klaus
    Schoell, Eckehard
    CHAOS, 2020, 30 (12)
  • [15] Probability Density Transitions in the FitzHugh-Nagumo Model with Levy Noise
    Yong, Xu
    Jing, Feng
    Wei, Xu
    Gu Rencai
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2015, 106 (05): : 309 - 322
  • [16] Multiple front standing waves in the FitzHugh-Nagumo equations
    Chen, Chao-Nien
    Sere, Eric
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 302 : 895 - 925
  • [17] Quantifying wave propagation in a chain of FitzHugh-Nagumo neurons
    Goulefack, L. Messee
    Masoller, C.
    Yamapi, R.
    Anteneodo, C.
    CHAOS, 2025, 35 (03)
  • [18] Synchronization and chimeras in a network of photosensitive FitzHugh-Nagumo neurons
    Hussain, Iqtadar
    Jafari, Sajad
    Ghosh, Dibakar
    Perc, Matjaz
    NONLINEAR DYNAMICS, 2021, 104 (03) : 2711 - 2721
  • [19] RIGOROUS DERIVATION OF THE NONLOCAL REACTION-DIFFUSION FITZHUGH-NAGUMO SYSTEM
    Crevat, Joachim
    Faye, Gregory
    Filbet, Francis
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) : 346 - 373
  • [20] Traveling Pulse Solutions in a Three-Component FitzHugh-Nagumo Model
    Teramoto, Takashi
    van Heijster, Peter
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (01): : 371 - 402