New results on approximate controllability of fractional delay integrodifferential systems of order 1 <r < 2 with Sobolev-type

被引:9
作者
Ma, Yong-Ki [1 ]
Raja, M. Mohan [2 ]
Shukla, Anurag [3 ]
Vijayakumar, V. [2 ]
Nisar, Kottakkaran Sooppy [4 ]
Thilagavathi, K. [2 ]
机构
[1] Kongju Natl Univ, Dept Appl Math, Chungcheongnam Do 32588, South Korea
[2] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[3] Rajkiya Engn Coll Kannauj, Dept Appl Sci, Kannauj 209732, India
[4] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Alkharj 11942, Saudi Arabia
基金
新加坡国家研究基金会;
关键词
Fractional derivatives and integrals; Fixed point techniques; Sobolev-type; Cosine families; Mild solutions; DIFFERENTIAL-INCLUSIONS; EQUATIONS; EXISTENCE;
D O I
10.1016/j.aej.2023.09.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this manuscript, we look at fractional evolution integrodifferential systems with infinite delay of order r is an element of (1, 2) with control problems. To begin, we establish the mild solution for the given system. Further, we look at the approximate controllability outcomes utilizing multivalued functions, Sobolev-type, nonlocal circumstances, fractional analysis, fixed point technique, and cosine families. Finally, an application for generating the primary outcome theory has been created.
引用
收藏
页码:501 / 518
页数:18
相关论文
共 45 条
[1]   Controllability for Sobolev type fractional integro-differential systems in a Banach space [J].
Ahmed, Hamdy M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[2]  
[Anonymous], 1992, MultiValued Differential Equations, DOI DOI 10.1515/9783110874228
[3]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[4]   Existence results for impulsive neutral evolution integrodifferential equations with infinite delay [J].
Balachandran, K. ;
Annapoorani, N. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2009, 3 (04) :674-684
[5]   Nonlocal Cauchy problem for abstract fractional semilinear evolution equations [J].
Balachandran, K. ;
Park, J. Y. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4471-4475
[6]  
Bana J., 1980, MEASURES NONCOMPACTN
[7]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[8]  
Byszewski L., 1997, J. Appl. Math. Stoch. Anal, V10, P265
[9]   Controllability of impulsive functional differential systems with infinite delay in Banach spaces [J].
Chang, Yong-Kui .
CHAOS SOLITONS & FRACTALS, 2007, 33 (05) :1601-1609
[10]   A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay [J].
Dineshkumar, C. ;
Udhayakumar, R. ;
Vijayakumar, V. ;
Nisar, Kottakkaran Sooppy ;
Shukla, Anurag .
CHAOS SOLITONS & FRACTALS, 2022, 157