Localization operators and wavelet multipliers involving two-dimensional linear canonical curvelet transform

被引:0
|
作者
Catana, Viorel [1 ]
Scumpu, Mihaela-Gratiela [1 ]
机构
[1] Univ Politehn Bucuresti, Fac Appl Sci, Dept Math Informat, Bucharest, Romania
关键词
Two-dimensional linear canonical transform; Curvelet transform; Wavelet multipliers; Localization operators; Schatten-von Neumann classes; NORM INEQUALITIES;
D O I
10.1007/s11868-023-00547-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to introduce and study the localization operators and the wavelet multipliers associated to two-dimensional linear canonical curvelet transform. We investigate the L-2-boundedness, compactness and Schatten-von Neumann properties for these classes of operators.
引用
收藏
页数:28
相关论文
共 31 条
  • [1] Localization operators and wavelet multipliers involving two-dimensional linear canonical curvelet transform
    Viorel Catană
    Mihaela-Graţiela Scumpu
    Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [2] The localization operator and wavelet multipliers involving the Watson transform
    H. M. Srivastava
    Pragya Shukla
    S. K. Upadhyay
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [3] The localization operator and wavelet multipliers involving the Watson transform
    Srivastava, H. M.
    Shukla, Pragya
    Upadhyay, S. K.
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (04)
  • [4] SYNCHROSQUEEZED CURVELET TRANSFORM FOR TWO-DIMENSIONAL MODE DECOMPOSITION
    Yang, Haizhao
    Ying, Lexing
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (03) : 2052 - 2083
  • [5] A Novel Image Encryption Algorithm Based on Compressive Sensing and a Two-Dimensional Linear Canonical Transform
    Li, Yuan-Min
    Jiang, Mingjie
    Wei, Deyun
    Deng, Yang
    FRACTAL AND FRACTIONAL, 2024, 8 (02)
  • [6] Linear canonical curvelet transform and the associated Heisenberg-type inequalities
    Khan, Arshad Ahmad
    Ravikumar, K.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (07)
  • [7] Localization operators in the realm of deformed wavelet transform
    Mejjaoli, Hatem
    Shah, Firdous A.
    Sraieb, Nadia
    ACTA SCIENTIARUM MATHEMATICARUM, 2025,
  • [8] Damage detection and denoising in two-dimensional structures using curvelet transform by wrapping method
    A. Nicknam
    M. H. Hosseini
    A. Bagheri
    Archive of Applied Mechanics, 2011, 81 : 1915 - 1924
  • [9] Damage detection and denoising in two-dimensional structures using curvelet transform by wrapping method
    Nicknam, A.
    Hosseini, M. H.
    Bagheri, A.
    ARCHIVE OF APPLIED MECHANICS, 2011, 81 (12) : 1915 - 1924
  • [10] Dunkl-Bessel wavelet transform and localization operators
    Mejjaoli, Hatem
    Sraieb, Nadia
    RAMANUJAN JOURNAL, 2025, 67 (01):