Co3O4 for sustainable CO2 reduction and possible fine-tuning towards selective CO production

被引:7
作者
Ranjan, Ravi [1 ,2 ]
Tekawadia, Jyoti [1 ,2 ]
Jain, Ruchi [1 ,2 ]
Mhamane, Nitin B. [1 ,2 ]
Raja, Thirumalaiswamy [1 ,2 ]
Gopinath, Chinnakonda S. [1 ,2 ]
机构
[1] CSIR Natl Chem Lab, Catalysis & Inorgan Chem Div, Dr Homi Bhabha Rd, Pune 411008, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
Heterogeneous catalysis; Carbon neutral economy; RWGS; SDG; Surface science; CARBON-DIOXIDE; HYDROGENATION; CATALYSTS; OXIDES; METAL; XPS; CU; PERFORMANCE; METHANATION; CHALLENGES;
D O I
10.1016/j.cej.2023.144459
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two main challenges involved in heterogeneous catalytic CO2 reduction are: (a) decreasing the consumption of H2 to the minimum required level with possibly the maximum CO2 conversion, and (b) concurrently enhancing the selectivity of the desired CO, at the cost of methane. Towards meeting these two challenges, Co3O4 spinel has been identified as a potential catalyst and it exhibits predominant CO selectivity > 673 K at atmospheric pressure. CO2 conversion begins > 523 K, with 100% CO selectivity observed > 673 K with CO2:H2 = 3:2. Current work shows a sustainable catalytic CO2 conversion to 100% CO selectivity with Co3O4-Nanocube (NC). Critically, CO selectivity and yield is observed to increase at the cost of methane with smaller amount of H2. 1:1 and 3:2 CO2:H2 ratio exhibits 88-100% CO selectivity with 24-32.5% CO2 conversion between 623 and 823 K. Irrespective of the input CO2:H2, ratio of CO2:H2 uptake changes from around 1:3 at 523 K to 1:1-1.5 at 823 K with concurrent production of significant methane to predominant CO, respectively. Surface electronic state changes was explored by near ambient pressure photoelectron spectroscopy, and the results suggests that Co3O4 is the active phase that promotes CO2 reduction selectively to CO. Broadening observed with the vibrational feature of the CO2 molecules at high temperature underscores the heterogeneous character of the catalyst surface, under operating conditions, due to changing electron density. By optimizing the gas hourly space velocity (GHSV), H2-lean CO2:H2 ratio, and the reaction temperature/pressure, 100% CO selectivity could be broadened to a range of operating conditions.
引用
收藏
页数:14
相关论文
共 52 条
  • [1] Nanocatalysis I: Synthesis of Metal and Bimetallic Nanoparticles and Porous Oxides and Their Catalytic Reaction Studies
    An, Kwangjin
    Somorjai, Gabor A.
    [J]. CATALYSIS LETTERS, 2015, 145 (01) : 233 - 248
  • [2] Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation
    Appel, Aaron M.
    Bercaw, John E.
    Bocarsly, Andrew B.
    Dobbek, Holger
    DuBois, Daniel L.
    Dupuis, Michel
    Ferry, James G.
    Fujita, Etsuko
    Hille, Russ
    Kenis, Paul J. A.
    Kerfeld, Cheal A.
    Morris, Robert H.
    Peden, Charles H. F.
    Portis, Archie R.
    Ragsdale, Stephen W.
    Rauchfuss, Thomas B.
    Reek, Joost N. H.
    Seefeldt, Lance C.
    Thauer, Rudolf K.
    Waldrop, Grover L.
    [J]. CHEMICAL REVIEWS, 2013, 113 (08) : 6621 - 6658
  • [3] Catalysis research of relevance to carbon management: Progress, challenges, and opportunities
    Arakawa, H
    Aresta, M
    Armor, JN
    Barteau, MA
    Beckman, EJ
    Bell, AT
    Bercaw, JE
    Creutz, C
    Dinjus, E
    Dixon, DA
    Domen, K
    DuBois, DL
    Eckert, J
    Fujita, E
    Gibson, DH
    Goddard, WA
    Goodman, DW
    Keller, J
    Kubas, GJ
    Kung, HH
    Lyons, JE
    Manzer, LE
    Marks, TJ
    Morokuma, K
    Nicholas, KM
    Periana, R
    Que, L
    Rostrup-Nielson, J
    Sachtler, WMH
    Schmidt, LD
    Sen, A
    Somorjai, GA
    Stair, PC
    Stults, BR
    Tumas, W
    [J]. CHEMICAL REVIEWS, 2001, 101 (04) : 953 - 996
  • [4] Utilisation of CO2 as a chemical feedstock:: opportunities and challenges
    Aresta, Michele
    Dibenedetto, Angela
    [J]. DALTON TRANSACTIONS, 2007, (28) : 2975 - 2992
  • [5] Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2
    Aresta, Michele
    Dibenedetto, Angela
    Angelini, Antonella
    [J]. CHEMICAL REVIEWS, 2014, 114 (03) : 1709 - 1742
  • [6] Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process
    Barakat, Nasser A. M.
    Khil, Myung Seob
    Sheikh, Faheem A.
    Kim, Hak Yong
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (32) : 12225 - 12233
  • [7] Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
    Biesinger, Mark C.
    Payne, Brad P.
    Grosvenor, Andrew P.
    Lau, Leo W. M.
    Gerson, Andrea R.
    Smart, Roger St. C.
    [J]. APPLIED SURFACE SCIENCE, 2011, 257 (07) : 2717 - 2730
  • [8] CO2 reforming of CH4
    Bradford, MCJ
    Vannice, MA
    [J]. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (01): : 1 - 42
  • [9] CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels
    Daza, Yolanda A.
    Kuhn, John N.
    [J]. RSC ADVANCES, 2016, 6 (55): : 49675 - 49691
  • [10] On the Origin of the Cobalt Particle Size Effects in Fischer-Tropsch Catalysis
    den Breejen, J. P.
    Radstake, P. B.
    Bezemer, G. L.
    Bitter, J. H.
    Froseth, V.
    Holmen, A.
    de Jong, K. P.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (20) : 7197 - 7203