An Optical Image-Aided Approach for Zero-Shot SAR Image Scene Classification

被引:4
作者
Ma, Yanjing [1 ]
Pei, Jifang [1 ]
Zhang, Xing [1 ]
Huo, Weibo [1 ]
Zhang, Yin [1 ]
Huang, Yulin [1 ]
Yang, Jianyu [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Sichuan, Peoples R China
来源
2023 IEEE RADAR CONFERENCE, RADARCONF23 | 2023年
基金
中国国家自然科学基金;
关键词
SAR; scene classification; zero-shot optical image-aided; feature compatibility function;
D O I
10.1109/RADARCONF2351548.2023.10149719
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Scene classification is one of the most significant tasks in synthetic aperture radar (SAR) image interpretation. However, most existing SAR image scene classification methods cannot effectively identify the scene categories without training samples, which seriously affects the classification performance of these unseen categories. It is an effective way to solve this problem by extracting information from easily accessible other-source aided information to assist SAR scene classification of unseen categories. To this end, a framework of optical image-aided zero-shot SAR image scene classification is established, including feature extraction, joint feature compatibility and calibration classification module. Specifically, the feature extraction module is employed to sufficiently extract features from optical and SAR images. The joint feature compatibility module can maximize the compatibility between extracted features. Based on the compatibility score, the calibration classification module combines superposition calibration and one-versus-all classifier, and finally achieves good performance in classification for zero-shot SAR scene. Experimental results based on multi-modal remote sensing scene classification (MRSSC) dataset have shown the superiority of the proposed method on zero-shot SAR image scene classification.
引用
收藏
页数:6
相关论文
共 17 条
  • [1] Predicting Deep Zero-Shot Convolutional Neural Networks using Textual Descriptions
    Ba, Jimmy Lei
    Swersky, Kevin
    Fidler, Sanja
    Salakhutdinov, Ruslan
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4247 - 4255
  • [2] Bartlett PL, 2008, J MACH LEARN RES, V9, P1823
  • [3] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [4] Island Loss for Learning Discriminative Features in Facial Expression Recognition
    Cai, Jie
    Meng, Zibo
    Khan, Ahmed Shehab
    Li, Zhiyuan
    O'Reilly, James
    Tong, Yan
    [J]. PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018), 2018, : 302 - 309
  • [5] Target Classification Using the Deep Convolutional Networks for SAR Images
    Chen, Sizhe
    Wang, Haipeng
    Xu, Feng
    Jin, Ya-Qiu
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4806 - 4817
  • [6] A Generalized Zero-Shot Learning Framework for PolSAR Land Cover Classification
    Gui, Rong
    Xu, Xin
    Wang, Lei
    Yang, Rui
    Pu, Fangling
    [J]. REMOTE SENSING, 2018, 10 (08)
  • [7] Learning Deep Cross-Modal Embedding Networks for Zero-Shot Remote Sensing Image Scene Classification
    Li, Yansheng
    Zhu, Zhihui
    Yu, Jin-Gang
    Zhang, Yongjun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10590 - 10603
  • [8] Likas A, 2003, PATTERN RECOGN, V36, P451, DOI 10.1016/S0031-3203(02)00060-2
  • [9] Liu K., 2021, INT ARCH PHOTOGRAMME, VXLIII-B2-2, P785, DOI 10.5194/isprs-archives-XLIII-B2-2021-785-2021
  • [10] Deep convolutional neural networks for ATR from SAR imagery
    Morgan, David A. E.
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXII, 2015, 9475