Integrating GWAS summary statistics, individual-level genotypic and omic data to enhance the performance for large-scale trait imputation

被引:1
作者
Ren, Jingchen [1 ,2 ]
Lin, Zhaotong [2 ]
Pan, Wei [2 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
WIDE ASSOCIATION; SCORES;
D O I
10.1093/hmg/ddad097
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, a non-parametric method has been proposed to impute the genetic component of a trait for a large set of genotyped individuals based on a separate genome-wide association study (GWAS) summary dataset of the same trait (from the same population). The imputed trait may contain linear, non-linear and epistatic effects of genetic variants, thus can be used for downstream linear or non-linear association analyses and machine learning tasks. Here, we propose an extension of the method to impute both genetic and environmental components of a trait using both single nucleotide polymorphism (SNP)-trait and omics-trait association summary data. We illustrate an application to a UK Biobank subset of individuals (n & AP; 80K) with both body mass index (BMI) GWAS data and metabolomic data. We divided the whole dataset into two equally sized and non-overlapping training and test datasets; we used the training data to build SNP- and metabolite-BMI association summary data and impute BMI on the test data. We compared the performance of the original and new imputation methods. As by the original method, the imputed BMI values by the new method largely retained SNP-BMI association information; however, the latter retained more information about BMI-environment associations and were more highly correlated with the original observed BMI values.
引用
收藏
页码:2693 / 2703
页数:11
相关论文
共 32 条
[1]   15 years of GWAS discovery: Realizing the promise [J].
Abdellaoui, Abdel ;
Yengo, Loic ;
Verweij, Karin J. H. ;
Visscher, Peter M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2023, 110 (02) :179-194
[2]   Association of circulating metabolites with healthy diet and risk of cardiovascular disease: analysis of two cohort studies [J].
Akbaraly, Tasnime ;
Wurtz, Peter ;
Singh-Manoux, Archana ;
Shipley, Martin J. ;
Haapakoski, Rita ;
Lehto, Maili ;
Desrumaux, Catherine ;
Kahonen, Mika ;
Lehtimaki, Terho ;
Mikkila, Vera ;
Hingorani, Aroon ;
Humphries, Steve E. ;
Kangas, Antti J. ;
Soininen, Pasi ;
Raitakari, Olli ;
Ala-Korpela, Mika ;
Kivimaki, Mika .
SCIENTIFIC REPORTS, 2018, 8
[3]  
An U, 2022, Bioinformatics, DOI DOI 10.1101/2022.08.15.503991
[4]   A reference map of potential determinants for the human serum metabolome [J].
Bar, Noam ;
Korem, Tal ;
Weissbrod, Omer ;
Zeevi, David ;
Rothschild, Daphna ;
Leviatan, Sigal ;
Kosower, Noa ;
Lotan-Pompan, Maya ;
Weinberger, Adina ;
Le Roy, Caroline I. ;
Menni, Cristina ;
Visconti, Alessia ;
Falchi, Mario ;
Spector, Tim D. ;
Adamski, Jerzy ;
Franks, Paul W. ;
Pedersen, Oluf ;
Segal, Eran .
NATURE, 2020, 588 (7836) :135-140
[5]   Predictive value of circulating NMR metabolic biomarkers for type 2 diabetes risk in the UK Biobank study [J].
Bragg, Fiona ;
Trichia, Eirini ;
Aguilar-Ramirez, Diego ;
Besevic, Jelena ;
Lewington, Sarah ;
Emberson, Jonathan .
BMC MEDICINE, 2022, 20 (01)
[6]   Summary statistics-based association test for identifying the pleiotropic effects with set of genetic variants [J].
Bu, Deliang ;
Wang, Xiao ;
Li, Qizhai .
BIOINFORMATICS, 2023, 39 (04)
[7]   Metabolomic profiles predict individual multidisease outcomes [J].
Buergel, Thore ;
Steinfeldt, Jakob ;
Ruyoga, Greg ;
Pietzner, Maik ;
Bizzarri, Daniele ;
Vojinovic, Dina ;
zu Belzen, Julius Upmeier ;
Loock, Lukas ;
Kittner, Paul ;
Christmann, Lara ;
Hollmann, Noah ;
Strangalies, Henrik ;
Braunger, Jana M. ;
Wild, Benjamin ;
Chiesa, Scott T. ;
Spranger, Joachim ;
Klostermann, Fabian ;
van den Akker, Erik B. ;
Trompet, Stella ;
Mooijaart, Simon P. ;
Sattar, Naveed ;
Jukema, J. Wouter ;
Lavrijssen, Birgit ;
Kavousi, Maryam ;
Ghanbari, Mohsen ;
Ikram, Mohammad A. ;
Slagboom, Eline ;
Kivimaki, Mika ;
Langenberg, Claudia ;
Deanfield, John ;
Eils, Roland ;
Landmesser, Ulf .
NATURE MEDICINE, 2022, 28 (11) :2309-+
[8]   The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 [J].
Buniello, Annalisa ;
MacArthur, Jacqueline A. L. ;
Cerezo, Maria ;
Harris, Laura W. ;
Hayhurst, James ;
Malangone, Cinzia ;
McMahon, Aoife ;
Morales, Joannella ;
Mountjoy, Edward ;
Sollis, Elliot ;
Suveges, Daniel ;
Vrousgou, Olga ;
Whetzel, Patricia L. ;
Amode, Ridwan ;
Guillen, Jose A. ;
Riat, Harpreet S. ;
Trevanion, Stephen J. ;
Hall, Peggy ;
Junkins, Heather ;
Flicek, Paul ;
Burdett, Tony ;
Hindorff, Lucia A. ;
Cunningham, Fiona ;
Parkinson, Helen .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D1005-D1012
[9]   The UK Biobank resource with deep phenotyping and genomic data [J].
Bycroft, Clare ;
Freeman, Colin ;
Petkova, Desislava ;
Band, Gavin ;
Elliott, Lloyd T. ;
Sharp, Kevin ;
Motyer, Allan ;
Vukcevic, Damjan ;
Delaneau, Olivier ;
O'Connell, Jared ;
Cortes, Adrian ;
Welsh, Samantha ;
Young, Alan ;
Effingham, Mark ;
McVean, Gil ;
Leslie, Stephen ;
Allen, Naomi ;
Donnelly, Peter ;
Marchini, Jonathan .
NATURE, 2018, 562 (7726) :203-+
[10]   Low physical activity, high television viewing and poor sleep duration cluster in overweight and obese adults; a cross-sectional study of 398,984 participants from the UK Biobank [J].
Cassidy, Sophie ;
Chau, Josephine Y. ;
Catt, Michael ;
Bauman, Adrian ;
Trenell, Michael I. .
INTERNATIONAL JOURNAL OF BEHAVIORAL NUTRITION AND PHYSICAL ACTIVITY, 2017, 14