Non-universality in clustered ballistic annihilation

被引:3
作者
Junge, Matthew [1 ]
Miguel, Arturo Ortiz San [2 ]
Reeves, Lily [3 ]
Sanchez, Cynthia Rivera [4 ]
机构
[1] Baruch Coll, New York, NY 10010 USA
[2] Brown Univ, Providence, RI USA
[3] Cornell Univ, Ithaca, NY USA
[4] Univ Puerto Rico Rio Pedras, San Juan, PR 00925 USA
关键词
statistical physics; interacting particle system; phase transition; ASYMPTOTIC-BEHAVIOR; KINETICS; DENSITIES;
D O I
10.1214/23-ECP529
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In ballistic annihilation, infinitely many particles with randomly assigned velocities move across the real line and mutually annihilate upon contact. We introduce a variant with superimposed clusters of stationary particles, and provide a simple formula for the critical initial cluster density in terms of the mean and variance of the cluster size.
引用
收藏
页数:12
相关论文
共 23 条
  • [1] Athreya K.B., 2004, Branching processes
  • [2] Diffusion-limited annihilating systems and the increasing convex order
    Bahl, Riti
    Barnet, Philip
    Johnson, Tobias
    Junge, Matthew
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [3] Bahl Riti, 2021, ALEA-LAT AM J PROBAB, V18
  • [4] Three-velocity coalescing ballistic annihilation*
    Benitez, Luis
    Jungei, Matthew
    Lyui, Hanbaek
    Redmani, Maximus
    Reevesi, Lily
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [5] ASYMPTOTIC-BEHAVIOR OF DENSITIES IN DIFFUSION DOMINATED 2-PARTICLE REACTIONS
    BRAMSON, M
    LEBOWITZ, JL
    [J]. PHYSICA A, 1990, 168 (01): : 88 - 94
  • [6] ASYMPTOTIC-BEHAVIOR OF DENSITIES FOR 2-PARTICLE ANNIHILATING RANDOM-WALKS
    BRAMSON, M
    LEBOWITZ, JL
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (1-2) : 297 - 372
  • [7] The combinatorics of the colliding bullets
    Broutin, Nicolas
    Marckert, Jean-Francois
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (02) : 401 - 431
  • [8] The upper threshold in ballistic annihilation
    Burdinski, Debbie
    Gupta, Shrey
    Junge, Matthew
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (02): : 1077 - 1087
  • [9] Recurrence and density decay for diffusion-limited annihilating systems
    Cabezas, M.
    Rolla, L. T.
    Sidoravicius, V.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (3-4) : 587 - 615
  • [10] Curien N, 2022, Arxiv, DOI arXiv:1912.06012