FRN: Fusion and recalibration network for low-light image enhancement

被引:5
|
作者
Singh, Kavinder [1 ]
Pandey, Ashutosh [1 ]
Agarwal, Akshat [1 ]
Agarwal, Mohit Kumar [1 ]
Shankar, Aditya [1 ]
Parihar, Anil Singh [1 ]
机构
[1] Delhi Technol Univ, Dept Comp Sci & Engn, Machine Learning Res Lab, Delhi, India
关键词
Low-light (LOL) image enhancement (LLIE); Deep learning-based network; Multi-exposure fusion; Multi-level feature extraction; Convolutional neural networks; MODEL;
D O I
10.1007/s11042-023-15908-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a Fusion and Recalibration Network (FRN) for low-light image enhancement. Firstly, The proposed method generates multi-exposure images from a single image to enhance low-light images. The proposed Feature Extraction Module (FEM) extracts multi-level features from an image. The proposed method uses Feature Augmentation Module (FAM), a U-net-like structure, to encode the multi-level features and assist in the reconstruction. The proposed Feature Fusion and Re-calibration Module (FFRM) re-calibrates and merges the features to provide an enhanced output image. The advantage of dynamically selecting features from extremely bright regions of the artificially darkened images and darker regions of the artificially brightened image results in a balanced output image. The proposed model was evaluated on various datasets and significantly outperformed most state-of-the-art techniques. Additionally, the experimental assessment shows that the proposed FRN model outperforms other quantitative and qualitative assessment approaches.
引用
收藏
页码:12235 / 12252
页数:18
相关论文
共 50 条
  • [1] FRN: Fusion and recalibration network for low-light image enhancement
    Kavinder Singh
    Ashutosh Pandey
    Akshat Agarwal
    Mohit Kumar Agarwal
    Aditya Shankar
    Anil Singh Parihar
    Multimedia Tools and Applications, 2024, 83 : 12235 - 12252
  • [2] COLOR CHANNEL FUSION NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT
    Zhao, Lingchao
    Gong, Xiaolin
    Liu, Kaihua
    Wang, Jian
    Zhao, Bai
    Liu, Yu
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1654 - 1658
  • [3] Low-light image enhancement network with decomposition and adaptive information fusion
    Hegui Zhu
    Kai Wang
    Ziwei Zhang
    Yuelin Liu
    Wuming Jiang
    Neural Computing and Applications, 2022, 34 : 7733 - 7748
  • [4] Low-light image enhancement network with decomposition and adaptive information fusion
    Zhu, Hegui
    Wang, Kai
    Zhang, Ziwei
    Liu, Yuelin
    Jiang, Wuming
    Neural Computing and Applications, 2022, 34 (10) : 7733 - 7748
  • [5] Low-light image enhancement network with decomposition and adaptive information fusion
    Zhu, Hegui
    Wang, Kai
    Zhang, Ziwei
    Liu, Yuelin
    Jiang, Wuming
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10): : 7733 - 7748
  • [6] Low-light image enhancement via multistage feature fusion network
    Tan, Mingming
    Fan, Jiayi
    Fan, Guodong
    Gan, Min
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)
  • [7] Unsupervised Boosted Fusion Network for Single Low-Light Image Enhancement
    Zhang, Jianfeng
    Li, Hengxuan
    Huo, Zhanqiang
    IEEE ACCESS, 2024, 12 : 179252 - 179264
  • [8] Lightening Network for Low-Light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel P. K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7984 - 7996
  • [9] Low-light image enhancement for infrared and visible image fusion
    Zhou, Yiqiao
    Xie, Lisiqi
    He, Kangjian
    Xu, Dan
    Tao, Dapeng
    Lin, Xu
    IET IMAGE PROCESSING, 2023, 17 (11) : 3216 - 3234
  • [10] Multi-Scale Progressive Fusion Network for Low-Light Image Enhancement
    Zhang, Hongxin
    Ran, Teng
    Xiao, Wendong
    Lv, Kai
    Peng, Song
    Yuan, Liang
    Wang, Jingchuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74