Explicit asynchronous time scheme with local push-forward stepping for discontinuous elastic wave propagation: One-dimensional heterogeneous cases and Hopkinson bar experiment

被引:0
作者
Dvorak, Radim [1 ,2 ]
Kolman, Radek [1 ,2 ]
Fila, Tomas [2 ]
Falta, Jan
Park, K. C. [2 ,3 ]
机构
[1] Inst Thermomech CAS, Vvi, Dolejskova 1402-5, Prague 8, Czech Republic
[2] Czech Tech Univ, Fac Transportat Sci, Na Florenci 25, Prague 1, Czech Republic
[3] Univ Colorado Boulder, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
关键词
Elastic wave propagation; Finite element method; Localized Lagrange multipliers method; Local pushforward-pullback method; Asynchronous integration; Split Hopkinson pressure bar; STRUCTURAL DYNAMICS; INTEGRATION; STABILITY; ALGORITHM; DOMAIN; STEPS;
D O I
10.1016/j.wavemoti.2023.103169
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This is a presentation of robust and accurate explicit time-stepping strategy for finite element modeling of elastic discontinuous wave propagation in strongly heterogeneous, multi-material and graded one-dimensional media. One of the major issues in FEM modeling is the existence of spurious numerical stress oscillations close to theoretical wave fronts due to temporal-spatial dispersion behavior of FE discretization. The numerical strategy presented for modeling of 1D discontinuous elastic waves is based on (a) pushforward-pullback local stepping - ensuring the elimination of dispersion due to different critical time step sizes of finite elements, (b) domain decomposition via localized Lagrange multipliers - to satisfy coupling kinematics and dynamic equations , (c) asynchronous time scheme - ensuring the correct information transfer of quantities for the case of integer ratios of time step size for all domain pairs. Dispersion behaviors, existence of spurious stress oscillations, and sensitivity of the dispersion to time step size are then suppressed. The proposed method is numerically tested with regard to the rectangular step pulse elastic propagation problem considering in-space varying Young's modulus. To prove robustness and accuracy, a comparison with results from commercial software, an analytical solution, and experimental data from partial assembly of a split Hopkinson pressure bar (SHPB) setup is provided.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:26
相关论文
共 43 条
  • [31] A simple algorithm for localized construction of non-matching structural interfaces
    Park, KC
    Felippa, CA
    Rebel, G
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (09) : 2117 - 2142
  • [32] A variational framework for solution method developments in structural mechanics
    Park, KC
    Felippa, CA
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1998, 65 (01): : 242 - 249
  • [33] A localized Version of the method of Lagrange multipliers and its applications
    Park, KC
    Felippa, CA
    Gumaste, UA
    [J]. COMPUTATIONAL MECHANICS, 2000, 24 (06) : 476 - 490
  • [34] Pochhammer L., 1876, J REINE ANGEW MATH, V81, P324, DOI [DOI 10.1515/CRLL.1876.81.324, 10.1515/9783112347287-019, DOI 10.1515/9783112347287-019]
  • [35] Dynamic uniaxial crushing of wood
    Reid, SR
    Peng, C
    [J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1997, 19 (5-6) : 531 - 570
  • [36] Comparative study of numerical explicit time integration algorithms
    Rio, G
    Soive, A
    Grolleau, V
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (04) : 252 - 265
  • [37] Dynamic penetration of cellular solids: Experimental investigation using Hopkinson bar and computed tomography
    Sleichrt, Jan
    Fila, Tomas
    Koudelka, Petr
    Adorna, Marcel
    Falta, Jan
    Zlamal, Petr
    Glinz, Jonathan
    Neuhaeuserova, Michaela
    Doktor, Tomas
    Mauko, Anja
    Kytyr, Daniel
    Vesenjak, Matej
    Duarte, Isabel
    Ren, Zoran
    Jirousek, Ondrej
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 800
  • [38] Smolinski P, 1996, COMPUT MECH, V18, P236
  • [39] Subcycling integration with non-integer time steps for structural dynamics problems
    Smolinski, P
    [J]. COMPUTERS & STRUCTURES, 1996, 59 (02) : 273 - 281
  • [40] SUBBARAJ K, 1989, COMPUT STRUCT, V32, P1387, DOI 10.1016/0045-7949(89)90315-5