Fluorine-Initiated Carboxyl Group Enhanced Combination Properties of the Polyethylene Separator for Lithium-Ion Batteries

被引:7
|
作者
Shi, Senhao [1 ]
Zhang, Daoxin [2 ]
Lv, Junwei [1 ]
Luo, Junhui [1 ]
Yang, Fan [2 ]
Wu, Tong [2 ]
Liu, Xiangyang [1 ,2 ]
机构
[1] Sichuan Univ, Coll Polymer Sci & Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Separator; Direct fluorination; Oxygen groups; Wettability; POLYPROPYLENE SEPARATOR; PERFORMANCE; FILM;
D O I
10.1021/acsapm.3c00495
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to the intrinsic inertness of polyethylene (PE),it is difficultto induce polar oxygen-containing groups onto the PE separator surfaceunder mild conditions on a large scale and further enhance their wettability.Herein, utilizing the ultrastrong oxidation of elemental fluorine(F-2), it was found that F-2 could easily reactwith the PE separator surface via radical-related routes, and thusoxygen would be naturally captured onto the separator surface forits radical affinity. The fluorinated PE separator exhibited significantlyimproved wettability as the water contact angle decreased from 117 & DEG;to 62 & DEG; at the minimum. Therefore, electrolyte uptake of the fluorinatedseparator reached 803.9% (of which the PE electrolyte uptake was 246.2%),and the ionic conductivity increased from 0.29 to 0.52mS/cm. Capacityretention of LiCoCO2/graphite cells assembled by a fluorinatedPE separator increased to 80.4% from 73.2% after 200 cycles of charge-discharge,and the discharge capacity of it also increased 38.83% (from 79.07mAh/g to 109.77 mAh/g) at 1.2 C. Besides, due to the spontaneous couplingbetween direct fluorination induced radicals, micro-cross-linkingspots were generated, and thus, modulus and thermal deformability,which meant service stability of the separator, were also improved.Therefore, direct fluorination could be considered an effective post-treatmentstrategy for high-performance PE separators.
引用
收藏
页码:5857 / 5866
页数:10
相关论文
共 50 条
  • [21] Rice paper as a separator membrane in lithium-ion batteries
    Zhang, L. C.
    Sun, X.
    Hu, Z.
    Yuan, C. C.
    Chen, C. H.
    JOURNAL OF POWER SOURCES, 2012, 204 : 149 - 154
  • [22] Preparation and Properties of an Alginate-Based Fiber Separator for Lithium-Ion Batteries
    Tan, Liwen
    Li, Zhenxing
    Shi, Ran
    Quan, Fengyu
    Wang, Bingbing
    Ma, Xiaomei
    Ji, Quan
    Tian, Xing
    Xia, Yanzhi
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (34) : 38175 - 38182
  • [23] A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries
    Chongrong Zhang
    Hui Li
    Shixuan Wang
    Yuliang Cao
    Hanxi Yang
    Xinping Ai
    Faping Zhong
    Journal of Energy Chemistry, 2020, 44 (05) : 33 - 40
  • [24] Preparation of 4A zeolite coated polypropylene membrane for lithium-ion batteries separator
    Shekarian, Ehsan
    Nasr, Mohammad Reza Jafari
    Mohammadi, Toraj
    Bakhtiari, Omid
    Javanbakht, Mehran
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (32)
  • [25] A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries
    Rao, Zhixiang
    Wu, Jingyi
    He, Bin
    Chen, Weilun
    Wang, Hua
    Fu, Qiuyun
    Huang, Yunhui
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (32) : 38194 - 38201
  • [26] Flame retardant vermiculite coated on polypropylene separator for lithium-ion batteries
    Carter, Maria
    Parekh, Mihit H.
    Tomar, Vikas
    Dietz, J. Eric
    Pol, Vilas G.
    APPLIED CLAY SCIENCE, 2021, 208
  • [27] Optimization of AlOOH powder characteristics for enhanced separator performance and stability in lithium-ion batteries
    Hyun, Da-Eun
    Han, Joo-Young
    Oh, Ji-Hui
    Kim, Yong-Nam
    Park, Chan-Woong
    Seo, Pyeong-Seop
    Baek, Jong-Oh
    Koo, Sang-Mo
    Kim, Sunghoon
    Lee, Dong-Won
    Shin, Weon Ho
    Oh, Jong-Min
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2025, 62 (01) : 221 - 232
  • [28] Fluorine chemistry in lithium-ion and sodium-ion batteries
    Pan, Zibing
    Chen, Huaqi
    Zeng, Yubin
    Ding, Yan
    Pu, Xiangjun
    Chen, Zhongxue
    ENERGY MATERIALS, 2023, 3 (06):
  • [29] Application of PVDF Organic Particles Coating on Polyethylene Separator for Lithium Ion Batteries
    Wang, Yuan
    Yin, Chuanqiang
    Song, Zhenglin
    Wang, Qiulin
    Lan, Yu
    Luo, Jinpeng
    Bo, Liwen
    Yue, Zhihao
    Sun, Fugen
    Li, Xiaomin
    MATERIALS, 2019, 12 (19)
  • [30] Bifunctional separator with high thermal stability and lithium dendrite inhibition toward high safety lithium-ion batteries
    Su, Miaomiao
    Chen, Yifu
    Wang, Suqing
    Wang, Haihui
    CHINESE CHEMICAL LETTERS, 2023, 34 (05)