Hydrogen production by catalytic steam reforming of waste cooking oil over La-Ni/ZSM-5 catalyst

被引:3
|
作者
Xiao, Na [1 ]
Zhao, Rui [1 ]
Liu, Yufei [1 ]
Zhan, Wei [1 ]
Xu, Yonghui [1 ]
Wu, Zhengshun [1 ]
机构
[1] Cent China Normal Univ, Chem Coll, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Waste Cooking Oil; Catalytic Steam Reforming; Hydrogen Production; La Promoter; Carbon Deposition; TAR MODEL-COMPOUND; BIO-OIL; LOW-TEMPERATURE; FAST PYROLYSIS; BIOMASS TAR; AROMATIC-COMPOUNDS; VEGETABLE-OIL; NI CATALYSTS; LA; GAS;
D O I
10.1007/s11814-023-1459-2
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ni/ZSM-5 catalyst is one of the promising catalysts to improve the catalytic steam reforming of waste cooking oil (WCO) for hydrogen production. Furthermore, the introduction of lanthanum (La) plays a huge role in inhibiting metal sintering and carbon deposition and improving the stability and activity of the catalyst. This study investigated the effects of reaction temperature (600-800 degrees C), steam to carbon molar ratio (S/C), n Ni/ZSM-5 (n=5, 10, and 15 wt%), and the addition of promoter (La) on the experimentally generated hydrogen yield and carbon deposition. Results showed that the experiment used 6 wt% La-10 wt% Ni/ZSM-5 at 0.1 MPa, 700 degrees C, space-time (tau)=0.56 g(catalyst)/g(WCO), and S/C=5.25, which obtained the yield of H-2 was 154.12 mol/kg, carbon deposition was 5.38%. Therefore, Ni-modified catalyst added La to improve the catalyst coking resistance and prevent carbon formation. Moreover, La can further promote the dispersion of nickel on the surface of the carrier and improve the catalytic performance of the catalyst for steam reforming reaction.
引用
收藏
页码:2174 / 2186
页数:13
相关论文
共 50 条
  • [21] Catalytic pyrolysis of bio-oil model compounds over La/P/Ni modified ZSM-5
    Song Q.
    Yu F.
    Wang J.
    Mao C.
    Nie Y.
    Ji J.
    Nongye Gongcheng Xuebao, (284-289): : 284 - 289
  • [22] Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni-Mo supported on modified sepiolite catalysts
    Liu, Shaomin
    Chen, Mingqiang
    Chu, Lei
    Yang, Zhonglian
    Zhu, Chuanhao
    Wang, Jun
    Chen, Minggong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (10) : 3948 - 3955
  • [23] Catalytic performance of mesoporous MgO supported Ni catalyst in steam reforming of model compounds of biomass fermentation for hydrogen production
    Wang, Yajing
    Yang, Xiaoxuan
    Wang, Yuhe
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (40) : 17846 - 17857
  • [24] Steam reforming of acetic acid for hydrogen production over Ni/CaxFeyO catalysts
    Wang, Zhibin
    Sun, Laizhi
    Chen, Lei
    Yang, Shuangxia
    Xie, Xinping
    Gao, Mingjie
    Li, Tianjin
    Zhao, Baofeng
    Si, Hongyu
    Hua, Dongliang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (66) : 33132 - 33142
  • [25] Biomass to hydrogen via catalytic steam reforming of bio-oil over Ni-supported alumina catalysts
    Seyedeyn-Azad, F.
    Salehi, E.
    Abedi, J.
    Harding, T.
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (03) : 563 - 569
  • [26] Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol
    Bahari, Mahadi B.
    Nguyen Huu Huy Phuc
    Alenazey, Feraih
    Vu, Khanh B.
    Ainirazali, Nurul
    Vo, Dai-Viet N.
    CATALYSIS TODAY, 2017, 291 : 67 - 75
  • [27] Bio-oil production from pyrolysis of waste sawdust with catalyst ZSM-5
    Eunjung Kim
    Hyungbae Gil
    Sangwon Park
    Jinwon Park
    Journal of Material Cycles and Waste Management, 2017, 19 : 423 - 431
  • [28] Bio-oil production from pyrolysis of waste sawdust with catalyst ZSM-5
    Kim, Eunjung
    Gil, Hyungbae
    Park, Sangwon
    Park, Jinwon
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2017, 19 (01) : 423 - 431
  • [29] Catalytic Synthesis of Carbon Nanotubes by Ni/ZSM-5 Catalyst from Waste Plastic Syngas
    Qi, Tian
    Hu, Xiaorui
    Lei, Tingzhou
    Jin, Tingxiang
    Zhu, Shiquan
    Jing, Xiaoyue
    Zhang, Jun
    Liu, Mengfei
    Song, Yawen
    Hu, Shen
    Cheng, Chuanxiao
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2022, 16 (03) : 356 - 366
  • [30] Mechanism of Hydrogen Production by the Catalytic Steam Reforming of Bio-oil
    Xu, Q.
    Xie, D.
    Wang, F.
    Yan, Y.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2013, 35 (11) : 1028 - 1038