Corrosion Resistance and Titanium Ion Release of Hybrid Dental Implants

被引:17
作者
Robles, Daniel [1 ,2 ]
Brizuela, Aritza [2 ]
Fernandez-Dominguez, Manuel [3 ]
Gil, Javier [4 ]
机构
[1] San Pablo Univ, Dept Translat Med CEU, Urbanizac Monteprincipe, Alcorcon 28925, Madrid, Spain
[2] Univ Europea Miguel Cervantes, Fac Odontol, C Padre Julio Chevalier 2, Valladolid 47012, Spain
[3] Univ CEU San Pablo, Hosp Monteprincipe, Dept Oral & Maxillofacial Surg, Ave Monteprincipe S-N, Alcorcon 28668, Madrid, Spain
[4] Univ Int Catalunya, Bioengn Inst Technol, Fac Med & Ciencias Salud, Josep Trueta S-N, Sant Cugat Del Valles 08195, Barcelona, Spain
关键词
hybrid dental implants; titanium; ion release; corrosion; roughness; topography; PERI-IMPLANTITIS; BEHAVIOR; SURFACE; PARTICLES; ROUGHNESS; SURVIVAL; DISEASES; FATIGUE; RATES;
D O I
10.3390/ma16103650
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the strategies for the fight against peri-implantitis is the fabrication of titanium dental implants with the part close to the neck without roughness. It is well known that roughness favors osseointegration but hinders the formation of biofilm. Implants with this type of structure are called hybrid dental implants, which sacrifice better coronal osseointegration for a smooth surface that hinders bacterial colonization. In this contribution, we have studied the corrosion resistance and the release of titanium ions to the medium of smooth (L), hybrid (H), and rough (R) dental implants. All implants were identical in design. Roughness was determined with an optical interferometer and residual stresses were determined for each surface by X-ray diffraction using the Bragg-Bentano technique. Corrosion studies were carried out with a Voltalab PGZ301 potentiostat, using Hank's solution as an electrolyte at a temperature of 37 degrees C. Open-circuit potentials (Eocp), corrosion potential (Ecorr), and current density (icorr) were determined. Implant surfaces were observed by JEOL 5410 scanning electron microscopy. Finally, for each of the different dental implants, the release of ions into Hank's solution at 37 degrees C at 1, 7, 14, and 30 days of immersion was determined by ICP-MS. The results, as expected, show a higher roughness of R with respect to L and compressive residual stresses of -201.2 MPa and -20.2 MPa, respectively. These differences in residual stresses create a potential difference in the H implant corresponding to Eocp of -186.4 mV higher than for the L and R of -200.9 and -192.2 mV, respectively. The corrosion potentials and current intensity are also higher for the H implants (-223 mV and 0.069 mu A/mm(2)) with respect to the L (-280 mV and 0.014 mu A/mm(2) and R (-273 mV and 0.019 mu A/mm(2)). Scanning electron microscopy revealed pitting in the interface zone of the H implants and no pitting in the L and R dental implants. The titanium ion release values to the medium are higher in the R implants due to their higher specific surface area compared to the H and L implants. The maximum values obtained are low, not exceeding 6 ppb in 30 days.
引用
收藏
页数:13
相关论文
共 58 条
[11]   Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions [J].
Berglundh, Tord ;
Armitage, Gary ;
Araujo, Mauricio G. ;
Avila-Ortiz, Gustavo ;
Blanco, Juan ;
Camargo, Paulo M. ;
Chen, Stephen ;
Cochran, David ;
Derks, Jan ;
Figuero, Elena ;
Hammerle, Christoph H. F. ;
Heitz-Mayfield, Lisa J. A. ;
Guy Huynh-Ba ;
Iacono, Vincent ;
Koo, Ki-Tae ;
Lambert, France ;
McCauley, Laurie ;
Quirynen, Marc ;
Renvert, Stefan ;
Salvi, Giovanni E. ;
Schwarz, Frank ;
Tarnow, Dennis ;
Tomasi, Cristiano ;
Wang, Hom-Lay ;
Zitzmann, Nicola .
JOURNAL OF CLINICAL PERIODONTOLOGY, 2018, 45 :S286-S291
[12]  
Branemark P., 1985, Osseointegration in clinical dentistry, V3rd
[13]   Influence of the microstructure on electrochemical corrosion and nickel release in NiTi orthodontic archwires [J].
Briceno, J. ;
Romeu, A. ;
Espinar, E. ;
Llamas, J. M. ;
Gil, F. J. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (08) :4989-4993
[14]   10-Year Survival and Success Rates of 511 Titanium Implants with a Sandblasted and Acid-Etched Surface: A Retrospective Study in 303 Partially Edentulous Patients [J].
Buser, Daniel ;
Janner, Simone F. M. ;
Wittneben, Julia-Gabriela ;
Braegger, Urs ;
Ramseier, Christoph A. ;
Salvi, Giovanni E. .
CLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, 2012, 14 (06) :839-851
[15]   Antibacterial Properties of Triethoxysilylpropyl Succinic Anhydride Silane (TESPSA) on Titanium Dental Implants [J].
Buxadera-Palomero, Judit ;
Godoy-Gallardo, Maria ;
Molmeneu, Meritxell ;
Punset, Miquel ;
Gil, Francisco Javier .
POLYMERS, 2020, 12 (04)
[16]   Surgical Management of Peri-Implantitis: A Systematic Review and Meta-Analysis of Treatment Outcomes [J].
Chan, Hsun-Liang ;
Lin, Guo-Hao ;
Suarez, Fernando ;
MacEachern, Mark ;
Wang, Hom-Lay .
JOURNAL OF PERIODONTOLOGY, 2014, 85 (08) :1027-1041
[17]   Elucidating the corrosion-related degradation mechanisms of a Ti-6Al-4V dental implant [J].
Chen, Xin ;
Shah, Kumar ;
Dong, Shiqi ;
Peterson, Lars ;
La Plante, Erika Callagon ;
Sant, Gaurau .
DENTAL MATERIALS, 2020, 36 (03) :431-441
[18]   Metals Biotribology and Oral Microbiota Biocorrosion Mechanisms [J].
Contuzzi, Nicola ;
Casalino, Giuseppe ;
Boccaccio, Antonio ;
Ballini, Andrea ;
Charitos, Ioannis Alexandros ;
Bottalico, Lucrezia ;
Santacroce, Luigi .
JOURNAL OF FUNCTIONAL BIOMATERIALS, 2023, 14 (01)
[19]   Galvanic corrosion behavior of titanium implants coupled to dental alloys [J].
Cortada, M ;
Giner, LL ;
Costa, S ;
Gil, FJ ;
Rodríguez, D ;
Planell, JA .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2000, 11 (05) :287-293
[20]   CONTAMINATED IMPLANT SURFACES - AN IN-VITRO COMPARISON OF IMPLANT SURFACE COATING AND TREATMENT MODALITIES FOR DECONTAMINATION [J].
DENNISON, DK ;
HUERZELER, MB ;
QUINONES, C ;
CAFFESSE, RG .
JOURNAL OF PERIODONTOLOGY, 1994, 65 (10) :942-948