Fractional optimal control problems with both integer-order and Atangana-Baleanu Caputo derivatives

被引:1
|
作者
Ma, Xiang-Xiang [1 ]
Liu, Song [1 ,2 ]
Li, Xiaoyan [1 ,2 ]
Zhao, Xiao-Wen [3 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Anhui Univ, Ctr Pure Math, Hefei, Peoples R China
[3] Hefei Univ Technol, Sch Math, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
Atangana-Baleanu Caputo derivative; collocation method; fractional optimal control problem; shifted Legendre polynomial; FORMULATION;
D O I
10.1002/asjc.3127
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article considers fractional optimal control problems (FOCPs) including both integer-order and Atangana-Baleanu Caputo derivatives. First, the existence and uniqueness of the solution of a fractional Cauchy problem is given. Then, applying calculus of variations and Lagrange multiplier method, we present necessary optimality conditions of FOCPs and sufficient optimality conditions are also given under some assumptions. Next, a collection method is developed to derive numerical solutions by using shifted Legendre polynomials. Finally, error estimate of numerical solutions is also provided, and numerical examples further show the accuracy and feasibility of our method.
引用
收藏
页码:4624 / 4637
页数:14
相关论文
共 46 条
  • [1] Behavioural study of symbiosis dynamics via the Caputo and Atangana-Baleanu fractional derivatives
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2019, 122 : 89 - 101
  • [2] Approximate solutions of Atangana-Baleanu variable order fractional problems
    Li, Xiuying
    Gao, Yang
    Wu, Boying
    AIMS MATHEMATICS, 2020, 5 (03): : 2285 - 2294
  • [3] Numerical patterns in reaction-diffusion system with the Caputo and Atangana-Baleanu fractional derivatives
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 160 - 169
  • [4] Numerical approximation of fractional burgers equation with Atangana-Baleanu derivative in Caputo sense
    Yadav, Swati
    Pandey, Rajesh K.
    CHAOS SOLITONS & FRACTALS, 2020, 133
  • [5] An application of a fuzzy system for solving time delay fractional optimal control problems with Atangana-Baleanu derivative
    Mortezaee, Marzieh
    Ghovatmand, Mehdi
    Nazemi, Alireza
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2022, 43 (06) : 1753 - 1777
  • [6] Numerical approximation of Atangana-Baleanu Caputo derivative for space-time fractional diffusion equations
    Wali, Mubashara
    Arshad, Sadia
    Eldin, Sayed M.
    Siddique, Imran
    AIMS MATHEMATICS, 2023, 8 (07): : 15129 - 15147
  • [7] Optimal control for cancer treatment mathematical model using Atangana-Baleanu-Caputo fractional derivative
    Sweilam, Nasser Hassan
    Al-Mekhlafi, Seham Mahyoub
    Assiri, Taghreed
    Atangana, Abdon
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [8] Fractional Chebyshev functional link neural network-optimization method for solving delay fractional optimal control problems with Atangana-Baleanu derivative
    Kheyrinaj, Farzaneh
    Nazemi, Alireza
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2020, 41 (03) : 808 - 832
  • [9] A comparative study of three numerical schemes for solving Atangana-Baleanu fractional integro-differential equation defined in Caputo sense
    Singh, Deeksha
    Sultana, Farheen
    Pandey, Rajesh K.
    Atangana, Abdon
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 1) : 149 - 168
  • [10] EXISTENCE AND STABILITY OF SOLUTION IN BANACH SPACE FOR AN IMPULSIVE SYSTEM INVOLVING ATANGANA-BALEANU AND CAPUTO-FABRIZIO DERIVATIVES
    Al-Sadi, Wadhah
    Wei, Zhouchao
    Moroz, Irene
    Alkhazzan, Abdulwasea
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (10)