Switching integrators reversibly in the astrophysical N-body problem

被引:3
作者
Hernandez, David M. [1 ]
Dehnen, Walter [2 ,3 ]
机构
[1] Yale Univ, Dept Astron, 52 Hillhouse, New Haven, CT 06511 USA
[2] Zent Astron Univ Heidelberg, Astron Rechen Inst, Monchhofstr 12 14, D-69120 Heidelberg, Germany
[3] Univ Leicester, Sch Phys & Astron, Univ Rd, Leicester LE1 7RH, England
关键词
methods: numerical; celestial mechanics; planets and satellites: dynamical evolution and stability; SYMPLECTIC INTEGRATORS; TIME-STEP; CLOSE ENCOUNTERS; ALGORITHM; MAPS; SIMULATIONS; SYSTEMS; CODE;
D O I
10.1093/mnras/stad657
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a simple algorithm to switch between N-body time integrators in a reversible way. We apply it to planetary systems undergoing arbitrarily close encounters and highly eccentric orbits, but the potential applications are broader. Upgrading an ordinary non-reversible switching integrator to a reversible one is straightforward and introduces no appreciable computational burden in our tests. Our method checks whether the integrator during the time-step violates a time-symmetric selection condition and redoes the step if necessary. In our experiments, a few per cent of steps would have violated the condition without our corrections. By eliminating them, the algorithm avoids long-term error accumulation, of several orders of magnitude in some cases.
引用
收藏
页码:4639 / 4648
页数:10
相关论文
共 64 条
  • [1] Aarseth S.J., 2008, LNP, V760, DOI DOI 10.1007/978-1-4020-8431-7
  • [2] A differentiable N-body code for transit timing and dynamical modelling - I. Algorithm and derivatives
    Agol, Eric
    Hernandez, David M.
    Langford, Zachary
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (02) : 1582 - 1605
  • [3] Antoñana M, 2021, Arxiv, DOI arXiv:2103.12839
  • [4] New families of symplectic splitting methods for numerical integration in dynamical astronomy
    Blanes, S.
    Casas, F.
    Farres, A.
    Laskar, J.
    Makazaga, J.
    Murua, A.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2013, 68 : 58 - 72
  • [5] Boekholt T., 2015, Comput. Astrophys. Cosmol., V2, P2, DOI DOI 10.1186/S40668-014-0005-3
  • [6] Boekholt T. C. N., 2022, MNRAS
  • [7] Brouwer D., 1937, Astron. J, V46, P149, DOI DOI 10.1086/105423
  • [8] A hybrid symplectic integrator that permits close encounters between massive bodies
    Chambers, JE
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 304 (04) : 793 - 799
  • [9] SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS
    CHANNELL, PJ
    SCOVEL, C
    [J]. NONLINEARITY, 1990, 3 (02) : 231 - 259
  • [10] N-body simulations of gravitational dynamics
    Dehnen, W.
    Read, J. I.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (05): : 1 - 28