Transcriptome Analysis of Roots from Wheat (Triticum aestivum L.) Varieties in Response to Drought Stress

被引:7
|
作者
Xi, Wei [1 ,2 ,3 ]
Hao, Chenyang [3 ]
Li, Tian [3 ]
Wang, Huajun [1 ,2 ]
Zhang, Xueyong [1 ,2 ,3 ]
机构
[1] Gansu Agr Univ, Coll Agron, Lanzhou 730070, Peoples R China
[2] Gansu Agr Univ, State Key Lab Aridland Crop Sci, Gansu Key Lab Crop Improvement & Germplasm Enhance, Lanzhou 730070, Peoples R China
[3] Chinese Acad Agr Sci, Inst Crop Sci, Key Lab Crop Gene Resources & Germplasm Enhancemen, Minist Agr & Rural Affaris,Natl Key Facil Crop Gen, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
wheat; RNA-seq; DEGs; GO; stress treatment; RT-qPCR; RNA-SEQ; GENOME SEQUENCE; MECHANISMS; STRINGTIE; GENES;
D O I
10.3390/ijms24087245
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Under climate change, drought is one of the most limiting factors that influences wheat (Triticum aestivum L.) production. Exploring stress-related genes is vital for wheat breeding. To identify genes related to the drought tolerance response, two common wheat cultivars, Zhengmai 366 (ZM366) and Chuanmai 42 (CM42), were selected based on their obvious difference in root length under 15% PEG-6000 treatment. The root length of the ZM366 cultivar was significantly longer than that of CM42. Stress-related genes were identified by RNA-seq in samples treated with 15% PEG-6000 for 7 days. In total, 11,083 differentially expressed genes (DEGs) and numerous single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) were identified. GO enrichment analysis revealed that the upregulated genes were mainly related to the response to water, acidic chemicals, oxygen-containing compounds, inorganic substances, and abiotic stimuli. Among the DEGs, the expression levels of 16 genes in ZM366 were higher than those in CM42 after the 15% PEG-6000 treatment based on RT-qPCR. Furthermore, EMS-induced mutants in Kronos (T. turgidum L.) of 4 representative DEGs possessed longer roots than the WT after the 15% PEG-6000 treatment. Altogether, the drought stress genes identified in this study represent useful gene resources for wheat breeding.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Conservation and divergence of the TaSOS1 gene family in salt stress response in wheat (Triticum aestivum L.)
    Wei Jiang
    Rui Pan
    Sebastian Buitrago
    Chu Wu
    Salah Fatouh Abou-Elwafa
    Yanhao Xu
    Wenying Zhang
    Physiology and Molecular Biology of Plants, 2021, 27 : 1245 - 1260
  • [32] Screening of bread wheat (Triticum aestivum L.) genotypes under drought stress conditions using multivariate analysis
    Arifuzzaman, M.
    Barman, S.
    Hayder, S.
    Azad, M. A. K.
    Turin, M. T. S.
    Amzad, M. A.
    Masuda, M. S.
    CEREAL RESEARCH COMMUNICATIONS, 2020, 48 (03) : 301 - 308
  • [33] Expression of nitrogen transporter genes in roots of winter wheat (Triticum aestivum L.) in response to soil drought with contrasting nitrogen supplies
    Duan, Jianfeng
    Tian, Hui
    Gao, Yajun
    CROP & PASTURE SCIENCE, 2016, 67 (02) : 128 - 136
  • [34] Screening of bread wheat (Triticum aestivum L.) genotypes under drought stress conditions using multivariate analysis
    M. Arifuzzaman
    S. Barman
    S. Hayder
    M. A. K. Azad
    M. T. S. Turin
    M. A. Amzad
    M. S. Masuda
    Cereal Research Communications, 2020, 48 : 301 - 308
  • [35] QTL mapping for early ground cover in wheat (Triticum aestivum L.) under drought stress
    Mondal, Biswajit
    Singh, Anupam
    Yadav, Aneeta
    Tomar, Ram Sewak Singh
    Vinod
    Singh, Gyanendra Pratap
    Prabhu, Kumble Vinod
    CURRENT SCIENCE, 2017, 112 (06): : 1266 - 1271
  • [36] Exploration of Genetic Pattern of Phenological Traits in Wheat (Triticum aestivum L.) under Drought Stress
    Ishaaq, Iqra
    Farooq, Muhammad Umer
    Tahira, Syeda Anjum
    Maqbool, Rizwana
    Barutcular, Celaleddin
    Yasir, Muhammad
    Bano, Saira
    Ulhassan, Zaid
    Zahid, Ghassan
    Asghar, Muhammad Ahsan
    Hussain, Sajad
    Gabor, Kocsy
    Ibrahimova, Ulkar
    Zhu, Jianqing
    Rastogi, Anshu
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2022, 91 (12) : 2733 - 2758
  • [37] Comparative Transcriptome Analysis Reveals Genetic Mechanism for Flowering Response in Two Wheat (Triticum aestivum L.) Cultivars
    Sun, F.
    Niu, Y.
    Song, T.
    Han, B.
    Liu, Z.
    You, W.
    Wang, P.
    Su, P.
    RUSSIAN JOURNAL OF GENETICS, 2023, 59 (SUPPL 1) : 9 - 18
  • [38] Exogenous strigolactones alleviate drought stress in wheat (Triticum aestivum L.) by promoting cell wall biogenesis to optimize root architecture
    Song, Miao
    Zhou, Sumei
    Hu, Naiyue
    Li, Junchang
    Huang, Yuan
    Zhang, Jiemei
    Chen, Xu
    Du, Xihe
    Niu, Jishan
    Yang, Xiwen
    He, Dexian
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 204
  • [39] INTERACTIVE EFFECTS OF ABSCISIC ACID (ABA) AND DROUGHT STRESS ON THE PHYSIOLOGICAL RESPONSES OF WINTER WHEAT (TRITICUM AESTIVUM L.)
    Kong, Haiyan
    Zhang, Zhen
    Qin, Juan
    Akram, Nudrat Aisha
    PAKISTAN JOURNAL OF BOTANY, 2021, 53 (05) : 1545 - 1551
  • [40] Comparative Transcriptome Analysis Reveals Genetic Mechanism for Flowering Response in Two Wheat (Triticum aestivum L.) Cultivars
    F. Sun
    Y. Niu
    T. Song
    B. Han
    Z. Liu
    W. You
    P. Wang
    P. Su
    Russian Journal of Genetics, 2023, 59 : 9 - 18