AlGaN as an electron transport layer for wide-bandgap perovskite solar cells

被引:2
作者
Hombe, Atsushi [1 ]
Saiki, Shinya [1 ]
Mori, Tetsuya [1 ]
Saito, Yuji [1 ]
Tanimoto, Tsutomu [1 ]
机构
[1] Nissan Motor Co Ltd, EV Syst Lab Res Div, Yokosuka, Kanagawa 2378523, Japan
关键词
electric vehicles; photovoltaic; charging; aluminum gallium nitride; perovskite; electron transport layer; optical wireless power transfer; EFFICIENT; GAN; PROGRESS; OFFSET; FILMS;
D O I
10.35848/1347-4065/acc2ca
中图分类号
O59 [应用物理学];
学科分类号
摘要
Perovskite solar cells are expected to be applied as photoreceivers for high-efficiency optical wireless power transfer for electric vehicles. The use of aluminum gallium nitride (AlGaN) as an electron transport layer (ETL) for wide-gap perovskite solar cells is hereby proposed in this paper. The electrical properties and energy-band alignment of AlGaN deposited by either hydride vapor phase epitaxy or metal-organic CVD are investigated. AlGaN shows a higher conduction band level than conventional ETL materials. Simulation of the performance of a perovskite solar cell with CH3NH3PbBr3 as the absorbing layer and AlGaN as the ETL was performed using a solar-cell capacitance simulator. The results suggest that AlGaN increases the power conversion efficiency of the solar cell by improving the conduction band offset between the perovskite layer and the ETL.
引用
收藏
页数:10
相关论文
共 53 条
[31]   Design and Modelling of Eco-Friendly CH3NH3SnI3-Based Perovskite Solar Cells with Suitable Transport Layers [J].
Mottakin, M. ;
Sobayel, K. ;
Sarkar, Dilip ;
Alkhammash, Hend ;
Alharthi, Sami ;
Techato, Kuaanan ;
Shahiduzzaman, Md. ;
Amin, Nowshad ;
Sopian, Kamaruzzaman ;
Akhtaruzzaman, Md. .
ENERGIES, 2021, 14 (21)
[32]   Effect of high-temperature post-deposition annealing on cesium lead bromide thin films deposited by vacuum evaporation [J].
Murata, Ayuki ;
Nishimura, Tatsuya ;
Shimizu, Hirofumi ;
Shiratori, Yuta ;
Kato, Takuya ;
Ishikawa, Ryousuke ;
Miyajima, Shinsuke .
AIP ADVANCES, 2020, 10 (04)
[33]   Deep levels in n-type AlGaN grown by hydride vapor-phase epitaxy on sapphire characterized by deep-level transient spectroscopy -: art. no. 222112 [J].
Osaka, J ;
Ohno, Y ;
Kishimoto, S ;
Maezawa, K ;
Mizutani, T .
APPLIED PHYSICS LETTERS, 2005, 87 (22) :1-3
[34]  
Pankove J., 1971, Optical Processes in Semiconductors
[35]   Optimized Device Geometry of Normally-On Field-Plate AlGaN/GaN High Electron Mobility Transistors for High Breakdown Performance Using TCAD Simulation [J].
Pharkphoumy, Sakhone ;
Janardhanam, Vallivedu ;
Jang, Tae-Hoon ;
Park, Jaejun ;
Shim, Kyu-Hwan ;
Choi, Chel-Jong .
ELECTRONICS, 2021, 10 (21)
[36]   Optical Wireless Power Transmission Using Si Photovoltaic Through Air, Water, and Skin [J].
Putra, Alexander William Setiawan ;
Tanizawa, Motoharu ;
Maruyama, Takeo .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (02) :157-160
[37]   Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights [J].
Raoui, Yassine ;
Ez-Zahraouy, Hamid ;
Kazim, Samrana ;
Ahmad, Shahzada .
JOURNAL OF ENERGY CHEMISTRY, 2021, 54 :822-829
[38]   Determination of the concentration of impurities in GaN from photoluminescence and secondary-ion mass spectrometry [J].
Reshchikov, M. A. ;
Vorobiov, M. ;
Andrieiev, O. ;
Ding, K. ;
Izyumskaya, N. ;
Avrutin, V ;
Usikov, A. ;
Helava, H. ;
Makarov, Yu .
SCIENTIFIC REPORTS, 2020, 10 (01)
[39]   Importance of Substrate Work Function Homogeneity for Reliable Ionization Energy Determination by Photoelectron Spectroscopy [J].
Schultz, Thorsten ;
Amsalem, Patrick ;
Kotadiya, Naresh B. ;
Lenz, Thomas ;
Blom, Paul W. M. ;
Koch, Norbert .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2019, 256 (02)
[40]   Modeling analysis of AlN and AlGaN HVPE [J].
Segal, A. S. ;
Bazarevskiy, D. S. ;
Bogdanov, M. V. ;
Yakovlev, E. V. .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, SUPPL 2, 2009, 6 :S329-S332