EEG-Based Seizure Prediction via Model Uncertainty Learning

被引:22
作者
Li, Chang [1 ,2 ]
Deng, Zhiwei [1 ,2 ]
Song, Rencheng [1 ,2 ]
Liu, Xiang [3 ]
Qian, Ruobing [3 ]
Chen, Xun [3 ,4 ]
机构
[1] Hefei Univ Technol, Dept Biomed Engn, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Sch Instrument Sci & Optoelect Engn, Anhui Prov Key Lab Meauring Theory & Precis Instru, Hefei 230009, Anhui, Peoples R China
[3] Univ Sci & Technol China, Affiliated Hosp USTC 1, Epilepsy Ctr, Dept Neurosurg,Div Life Sci & Med, Hefei 230001, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230001, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalogram (EEG); seizure pre-diction; RepNet; modified Monte Carlo dropout (MMCD); model uncertainty learning; NEURAL-NETWORK; SYSTEM;
D O I
10.1109/TNSRE.2022.3217929
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep neural networks (DNNs) have the powerful ability to automatically extract efficient features, which makes them prominent in electroencephalogram (EEG) based seizure prediction tasks. However, current research in this field cannot take the model uncertainty into account, causing the prediction less credible. To this end, we introduce a novel end-to-end patient-specific seizure prediction framework via model uncertainty learning. Specifically, we propose a reparameterized EEG-based lightweight CNN architecture and a modified Monte Carlo dropout (RepNet-MMCD) strategy to improve the reliability of the DNNs-based model. In RepNet, we obtain multi-scale feature representations by applying depthwise separable convolutions of different kernels. After training, depthwise convolutions with different scales are equivalently converted into a single convolution layer, which can greatly reduce computational budgets without losing model performance. In addition, we propose a modified Monte Carlo (MMCD) strategy, leveraging the samples-based temporal information in EEG signals to simulate the Monte Carlo dropout sampling. Sensitivity, false-positive rate (FPR), and area under curve (AUC) of the proposed RepNet-MMCD achieve 93.1%, 0.033/h, 0.950 and 81.6%, 0.056/h, 0.903 on two public datasets, respectively. We further extend the MMCD strategy to the other baseline methods, which can improve the performance of seizure prediction by a clear margin.
引用
收藏
页码:180 / 191
页数:12
相关论文
共 46 条
  • [1] Epileptic Seizure Detection With a Reduced Montage: A Way Forward for Ambulatory EEG Devices
    Asif, Raheel
    Saleem, Sand
    Hassan, Syed Ali
    Alharbi, Soltan Abed
    Kamboh, Awais Mehmood
    [J]. IEEE ACCESS, 2020, 8 : 65880 - 65890
  • [2] Epileptic Seizure Prediction Using Deep Transformer Model
    Bhattacharya, Abhijeet
    Baweja, Tanmay
    Karri, S. P. K.
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2022, 32 (02)
  • [3] Blundell C, 2015, PR MACH LEARN RES, V37, P1613
  • [4] Crowdsourcing reproducible seizure forecasting in human and canine epilepsy
    Brinkmann, Benjamin H.
    Wagenaar, Joost
    Abbot, Drew
    Adkins, Phillip
    Bosshard, Simone C.
    Chen, Min
    Tieng, Quang M.
    He, Jialune
    Munoz-Almaraz, F. J.
    Botella-Rocamora, Paloma
    Pardo, Juan
    Zamora-Martinez, Francisco
    Hills, Michael
    Wu, Wei
    Korshunova, Iryna
    Cukierski, Will
    Vite, Charles
    Patterson, Edward E.
    Litt, Brian
    Worrell, Gregory A.
    [J]. BRAIN, 2016, 139 : 1713 - 1722
  • [5] Seizure Prediction using Convolutional Neural Networks and Sequence Transformer Networks
    Chen, Ryan
    Parhi, Keshab K.
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 6483 - 6486
  • [6] Toward Open-World Electroencephalogram Decoding Via Deep Learning: A comprehensive survey
    Chen, Xun
    Li, Chang
    Liu, Aiping
    McKeown, Martin J.
    Qian, Ruobing
    Wang, Z. Jane
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2022, 39 (02) : 117 - 134
  • [7] Real-Time Epileptic Seizure Prediction Using AR Models and Support Vector Machines
    Chisci, Luigi
    Mavino, Antonio
    Perferi, Guido
    Sciandrone, Marco
    Anile, Carmelo
    Colicchio, Gabriella
    Fuggetta, Filomena
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (05) : 1124 - 1132
  • [8] Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study
    Cook, Mark J.
    O'Brien, Terence J.
    Berkovic, Samuel F.
    Murphy, Michael
    Morokoff, Andrew
    Fabinyi, Gavin
    D'Souza, Wendyl
    Yerra, Raju
    Archer, John
    Litewka, Lucas
    Hosking, Sean
    Lightfoot, Paul
    Ruedebusch, Vanessa
    Sheffield, W. Douglas
    Snyder, David
    Leyde, Kent
    Himes, David
    [J]. LANCET NEUROLOGY, 2013, 12 (06) : 563 - 571
  • [9] Efficient Epileptic Seizure Prediction Based on Deep Learning
    Daoud, Hisham
    Bayoumi, Magdy A.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (05) : 804 - 813
  • [10] Daubener L., 2020, arXiv