Cold-atom shaping with MEMS scanning mirrors

被引:1
|
作者
Bregazzi, Alan [1 ]
Janin, Paul [2 ]
Dyer, Sean [1 ]
Mcgilligan, James P. [1 ]
Burrow, Oliver [1 ]
Riis, Erling [1 ]
Uttamchandani, Deepak [2 ]
Bauer, Ralf [2 ]
Griffin, Paul F. [1 ]
机构
[1] Univ Strathclyde, SUPA & Dept Phys, Glasgow G4 0NG, Scotland
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Active elements - Atom cloud - Cold atoms - Magnetooptical traps - MEMS (microelectromechanical system) - Resonant beams - Scanning mirror - Selective fluorescence - Trapped atoms - Ultracold atoms;
D O I
10.1364/OL.475353
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate the integration of micro-electro-mechanical-systems (MEMS) scanning mirrors as active elements for the local optical pumping of ultra-cold atoms in a magneto -optical trap. A pair of MEMS mirrors steer a focused resonant beam through a cloud of trapped atoms shelved in the F = 1 ground-state of 87Rb for spatially selective flu-orescence of the atom cloud. Two-dimensional control is demonstrated by forming geometrical patterns along the imaging axis of the cold atom ensemble. Such control of the atomic ensemble with a microfabricated mirror pair could find applications in single atom selection, local optical pumping, and arbitrary cloud shaping. This approach has significant potential for miniaturization and in creating portable control systems for quantum optic experiments.
引用
收藏
页码:37 / 40
页数:4
相关论文
共 50 条
  • [41] OPERATION OF A COLD-ATOM LASER IN A MAGNETOOPTICAL TRAP
    HILICO, L
    FABRE, C
    GIACOBINO, E
    EUROPHYSICS LETTERS, 1992, 18 (08): : 685 - 688
  • [42] Cold-atom clock based on a diffractive optic
    Elvin, R.
    Hoth, G. W.
    Wright, M.
    Lewis, B.
    McGilligan, J. P.
    Arnold, A. S.
    Griffin, P. F.
    Riis, E.
    OPTICS EXPRESS, 2019, 27 (26) : 38359 - 38366
  • [43] Theoretical study of a cold-atom beam splitter
    Gaaloul, Naceur
    Suzor-Weiner, Annick
    Pruvost, Laurence
    Telmini, Mourad
    Charron, Eric
    PHYSICAL REVIEW A, 2006, 74 (02):
  • [44] Searching for a supersolid in cold-atom optical lattices
    Scarola, V. W.
    Demler, E.
    Das Sarma, S.
    PHYSICAL REVIEW A, 2006, 73 (05):
  • [45] A cold-atom Fermi-Hubbard antiferromagnet
    Azurenko, Anton M.
    Chiu, Christie S.
    Ji, Geoffrey
    Parsons, Maxwell F.
    Kanasz-Nagy, Marton
    Schmidt, Richard
    Grusdt, Fabian
    Demler, Eugene
    Greif, Daniel
    Greiner, Markus
    NATURE, 2017, 545 (7655) : 462 - +
  • [46] Status of a compact cold-atom CPT frequency standard
    Esnault, F. -X.
    Donley, E. A.
    Kitching, J.
    Ivanov, E. N.
    2011 JOINT CONFERENCE OF THE IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM/EUROPEAN FREQUENCY AND TIME FORUM PROCEEDINGS, 2011, : 612 - 614
  • [47] Bounds on collapse models from cold-atom experiments
    Bilardello, Marco
    Donadi, Sandro
    Vinante, Andrea
    Bassi, Angelo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 462 : 764 - 782
  • [48] Cold-atom gravimetry with a Bose-Einstein condensate
    Debs, J. E.
    Altin, P. A.
    Barter, T. H.
    Doering, D.
    Dennis, G. R.
    McDonald, G.
    Anderson, R. P.
    Close, J. D.
    Robins, N. P.
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [49] HIGH STABILITY TWO AXIS COLD-ATOM GYROSCOPE
    Guessoum, M.
    Gautier, R.
    Bouton, Q.
    Sidorenkov, L.
    Landragin, A.
    Geiger, R.
    2022 9TH IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS AND SYSTEMS (IEEE INERTIAL 2022), 2022,
  • [50] Synchronization of a self-sustained cold-atom oscillator
    Heimonen, H.
    Kwek, L. C.
    Kaiser, R.
    Labeyrie, G.
    PHYSICAL REVIEW A, 2018, 97 (04)