Comparison Between CNN, ViT and CCT for Channel Frequency Response Interpretation and Application to G.Fast

被引:2
作者
Dierickx, Philippe [1 ]
Van Damme, Axel [1 ]
Dupuis, Nicolas [1 ]
Delaby, Olivier [1 ]
机构
[1] Nokia Bell Labs Solut Res, Dept Software & Data Syst Res SDSR Autonomous Netw, B-2018 Antwerp, Belgium
关键词
Transformers; Computational modeling; DSL; Frequency response; Convolutional neural networks; Data models; Channel estimation; CNN; ViT; CCT; channel frequency response;
D O I
10.1109/ACCESS.2023.3247877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional Neural Networks (CNN) and more recently Visual Transformers (ViT) have been heavily used in specific areas like computer vision. Through this work, we explore and compare the CNNs and ViT models applied to a telecommunication signal, more specifically to interpret a G.fast channel frequency response. As both CNNs and ViT bring advantages, we have deepened the research by using a combination of both convolutions and transformers using Compact Convolutional Transformers (CCT) models. This study demonstrates that using transformer based models on a 1-D signal processing use case, we have significantly gained in accuracy compared to traditional convolution based models.
引用
收藏
页码:24039 / 24052
页数:14
相关论文
共 13 条
  • [1] [Anonymous], 2019, G9701 ITUT
  • [2] Emerging Properties in Self-Supervised Vision Transformers
    Caron, Mathilde
    Touvron, Hugo
    Misra, Ishan
    Jegou, Herve
    Mairal, Julien
    Bojanowski, Piotr
    Joulin, Armand
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9630 - 9640
  • [3] dAscoli S., 2022, J. Stat. Mech.
  • [4] Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929, 10.48550/arXiv.2010.11929]
  • [5] Dupuis N., 2019, EPO Patent, Patent No. 11146344
  • [6] Ericsson AB, 2012, ITU T CONTR IMPR MOD
  • [7] CMT: Convolutional Neural Networks Meet Vision Transformers
    Guo, Jianyuan
    Han, Kai
    Wu, Han
    Tang, Yehui
    Chen, Xinghao
    Wang, Yunhe
    Xu, Chang
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12165 - 12175
  • [8] Hassani A, 2022, Arxiv, DOI [arXiv:2104.05704, 10.48550/ARXIV.2104.05704]
  • [9] Krizhevsky A, 2014, Arxiv, DOI arXiv:1404.5997
  • [10] Naseer M, 2021, Arxiv, DOI [arXiv:2105.10497, DOI 10.48550/ARXIV.2105.10497]