Using Van Allen Probes and Arase Observations to Develop an Empirical Plasma Density Model in the Inner Zone

被引:14
作者
Hartley, D. P. [1 ]
Cunningham, G. S. [2 ]
Ripoll, J. -f. [3 ,4 ]
Malaspina, D. M. [5 ,6 ]
Kasahara, Y. [7 ]
Miyoshi, Y. [8 ]
Matsuda, S. [7 ]
Nakamura, S. [8 ]
Tsuchiya, F. [9 ]
Kitahara, M. [9 ]
Kumamoto, A. [9 ]
Shinohara, I. [10 ]
Matsuoka, A. [11 ]
机构
[1] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
[3] CEA, DAM, DIF, Arpajon, France
[4] UPS, CEA, LMCE, Bruyeres le Chatel, France
[5] Univ Colorado, Astrophys & Planetary Sci Dept, Boulder, CO USA
[6] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA
[7] Kanazawa Univ, Kanazawa, Japan
[8] Nagoya Univ, Nagoya, Japan
[9] Tohoku Univ, Sendai, Japan
[10] JAXA, Sagamihara, Japan
[11] Kyoto Univ, Kyoto, Japan
基金
美国国家科学基金会;
关键词
plasma density; Van Allen Probes; Arase; plasmasphere; inner radiation belt; ELECTRON-RADIATION BELTS; RELATIVISTIC ELECTRONS; SHEATH IMPEDANCE; DIFFUSION; WAVES; ACCELERATION; SIMULATIONS; ENERGY; CHORUS; HISS;
D O I
10.1029/2022JA031012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A new empirical density model is developed for the inner zone between 1 L < 3 using plasma densities inferred from the upper hybrid resonance on Arase, and hiss-inferred density values from Van Allen Probes. The Van Allen Probes hiss-inferred densities are first recalibrated and validated against Arase observations, using both a conjunction event and statistical analyses. The newly developed density model includes dependencies on L, magnetic latitude, and magnetic local time (MLT). Between 1.5 L < 3.0, the equatorial density variation with L is shown to be equivalent to that of the Ozhogin et al. (2012, ) model. However, for L < 1.5, this dependence changes as the plasma density increases at a faster rate with decreasing L. The latitudinal dependence of the plasma density is shown to present a flatter profile than previous models, meaning lower densities extend to higher latitudes. This dependence is well-modeled by updated fitting coefficients. A clear MLT dependence of the plasma density is identified, which was not found or included in some previous models. This variation is consistent with the diurnal variation of the ionosphere, peaking near MLT = 14 and becoming larger in amplitude with decreasing L. A function describing this MLT dependence is presented. Overall, the new L, latitude, and MLT-dependent empirical model can provide density values in areas outside the validity region of many previous models, making it a useful resource for accurately determining diffusion coefficients and predicting electron dynamics and their lifetimes in the inner radiation belt.
引用
收藏
页数:15
相关论文
共 68 条
[21]   The Angular Distribution of Lower Band Chorus Waves Near Plasmaspheric Plumes [J].
Hartley, D. P. ;
Chen, L. ;
Christopher, I. W. ;
Kletzing, C. A. ;
Santolik, O. ;
Li, W. ;
Shi, R. .
GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (09)
[22]   Quantifying the Sheath Impedance of the Electric Double Probe Instrument on the Van Allen Probes [J].
Hartley, D. P. ;
Christopher, I. W. ;
Kletzing, C. A. ;
Kurth, W. S. ;
Santolik, O. ;
Kolmasova, I ;
Wygant, J. R. ;
Bonnell, J. W. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (05)
[23]   Determining Plasmaspheric Densities from Observations of Plasmaspheric Hiss [J].
Hartley, D. P. ;
Kletzing, C. A. ;
De Pascuale, S. ;
Kurth, W. S. ;
Santolik, O. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (08) :6679-6691
[24]   An improved sheath impedance model for the Van Allen Probes EFW instrument: Effects of the spin axis antenna [J].
Hartley, D. P. ;
Kletzing, C. A. ;
Kurth, W. S. ;
Hospodarsky, G. B. ;
Bounds, S. R. ;
Averkamp, T. F. ;
Bonnell, J. W. ;
Santolk, O. ;
Wygant, J. R. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (04) :4420-4429
[25]   Using the cold plasma dispersion relation and whistler mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument [J].
Hartley, D. P. ;
Kletzing, C. A. ;
Kurth, W. S. ;
Bounds, S. R. ;
Averkamp, T. F. ;
Hospodarsky, G. B. ;
Wygant, J. R. ;
Bonnell, J. W. ;
Santolik, O. ;
Watt, C. E. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (05) :4590-4606
[26]   Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes [J].
Hartley, D. P. ;
Chen, Y. ;
Kletzing, C. A. ;
Denton, M. H. ;
Kurth, W. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (02) :1144-1152
[27]  
Hartley D. P., HISS INFERRED PLASMA, DOI [10.25820/data.006196, DOI 10.25820/DATA.006196]
[28]   Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus [J].
Horne, RB ;
Thorne, RM .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (10) :34-1
[29]   Timescale for radiation belt electron acceleration by whistler mode chorus waves [J].
Horne, RB ;
Thorne, RM ;
Glauert, SA ;
Albert, JM ;
Meredith, NP ;
Anderson, RR .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A3)
[30]   Resonant diffusion of radiation belt electrons by whistler-mode chorus [J].
Horne, RB ;
Glauert, SA ;
Thorne, RM .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (09) :46-1