Using Van Allen Probes and Arase Observations to Develop an Empirical Plasma Density Model in the Inner Zone

被引:14
作者
Hartley, D. P. [1 ]
Cunningham, G. S. [2 ]
Ripoll, J. -f. [3 ,4 ]
Malaspina, D. M. [5 ,6 ]
Kasahara, Y. [7 ]
Miyoshi, Y. [8 ]
Matsuda, S. [7 ]
Nakamura, S. [8 ]
Tsuchiya, F. [9 ]
Kitahara, M. [9 ]
Kumamoto, A. [9 ]
Shinohara, I. [10 ]
Matsuoka, A. [11 ]
机构
[1] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
[3] CEA, DAM, DIF, Arpajon, France
[4] UPS, CEA, LMCE, Bruyeres le Chatel, France
[5] Univ Colorado, Astrophys & Planetary Sci Dept, Boulder, CO USA
[6] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA
[7] Kanazawa Univ, Kanazawa, Japan
[8] Nagoya Univ, Nagoya, Japan
[9] Tohoku Univ, Sendai, Japan
[10] JAXA, Sagamihara, Japan
[11] Kyoto Univ, Kyoto, Japan
基金
美国国家科学基金会;
关键词
plasma density; Van Allen Probes; Arase; plasmasphere; inner radiation belt; ELECTRON-RADIATION BELTS; RELATIVISTIC ELECTRONS; SHEATH IMPEDANCE; DIFFUSION; WAVES; ACCELERATION; SIMULATIONS; ENERGY; CHORUS; HISS;
D O I
10.1029/2022JA031012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A new empirical density model is developed for the inner zone between 1 L < 3 using plasma densities inferred from the upper hybrid resonance on Arase, and hiss-inferred density values from Van Allen Probes. The Van Allen Probes hiss-inferred densities are first recalibrated and validated against Arase observations, using both a conjunction event and statistical analyses. The newly developed density model includes dependencies on L, magnetic latitude, and magnetic local time (MLT). Between 1.5 L < 3.0, the equatorial density variation with L is shown to be equivalent to that of the Ozhogin et al. (2012, ) model. However, for L < 1.5, this dependence changes as the plasma density increases at a faster rate with decreasing L. The latitudinal dependence of the plasma density is shown to present a flatter profile than previous models, meaning lower densities extend to higher latitudes. This dependence is well-modeled by updated fitting coefficients. A clear MLT dependence of the plasma density is identified, which was not found or included in some previous models. This variation is consistent with the diurnal variation of the ionosphere, peaking near MLT = 14 and becoming larger in amplitude with decreasing L. A function describing this MLT dependence is presented. Overall, the new L, latitude, and MLT-dependent empirical model can provide density values in areas outside the validity region of many previous models, making it a useful resource for accurately determining diffusion coefficients and predicting electron dynamics and their lifetimes in the inner radiation belt.
引用
收藏
页数:15
相关论文
共 68 条
[1]   VLF Transmitters and Lightning-Generated Whistlers: 2. Diffusion of Radiation Belt Electrons [J].
Albert, J. M. ;
Starks, M. J. ;
Selesnick, R. S. ;
Ling, A. G. ;
O'Malley, S. ;
Quinn, R. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (03)
[2]   Evaluation of quasi-linear diffusion coefficients for whistler mode waves in a plasma with arbitrary density ratio [J].
Albert, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A3)
[3]   2 ANOMALIES IN THE IONOSPHERE [J].
APPLETON, EV .
NATURE, 1946, 157 (3995) :691-691
[4]   A brief review of equatorial ionization anomaly and ionospheric irregularities [J].
Balan, Nanan ;
Liu, Libo ;
Le, HuiJun .
EARTH AND PLANETARY PHYSICS, 2018, 2 (04) :257-275
[5]   The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft [J].
Blake, J. B. ;
Carranza, P. A. ;
Claudepierre, S. G. ;
Clemmons, J. H. ;
Crain, W. R., Jr. ;
Dotan, Y. ;
Fennell, J. F. ;
Fuentes, F. H. ;
Galvan, R. M. ;
George, J. S. ;
Henderson, M. G. ;
Lalic, M. ;
Lin, A. Y. ;
Looper, M. D. ;
Mabry, D. J. ;
Mazur, J. E. ;
McCarthy, B. ;
Nguyen, C. Q. ;
O'Brien, T. P. ;
Perez, M. A. ;
Redding, M. T. ;
Roeder, J. L. ;
Salvaggio, D. J. ;
Sorensen, G. A. ;
Spence, H. E. ;
Yi, S. ;
Zakrzewski, M. P. .
SPACE SCIENCE REVIEWS, 2013, 179 (1-4) :383-421
[6]   AN ISEE/WHISTLER MODEL OF EQUATORIAL ELECTRON-DENSITY IN THE MAGNETOSPHERE [J].
CARPENTER, DL ;
ANDERSON, RR .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1992, 97 (A2) :1097-1108
[7]   A neural network model of three-dimensional dynamic electron density in the inner magnetosphere [J].
Chu, X. ;
Bortnik, J. ;
Li, W. ;
Ma, Q. ;
Denton, R. ;
Yue, C. ;
Angelopoulos, V. ;
Thorne, R. M. ;
Darrouzet, F. ;
Ozhogin, P. ;
Kletzing, C. A. ;
Wang, Y. ;
Menietti, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (09) :9183-9197
[8]   Empirically Estimated Electron Lifetimes in the Earth's Radiation Belts: Van Allen Probe Observations [J].
Claudepierre, S. G. ;
Ma, Q. ;
Bortnik, J. ;
O'Brien, T. P. ;
Fennell, J. F. ;
Blake, J. B. .
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (03)
[9]   A Revised Look at Relativistic Electrons in the Earth's Inner Radiation Zone and Slot Region [J].
Claudepierre, S. G. ;
O'Brien, T. P. ;
Looper, M. D. ;
Blake, J. B. ;
Fennell, J. F. ;
Roeder, J. L. ;
Clemmons, J. H. ;
Mazur, J. E. ;
Turner, D. L. ;
Reeves, D. ;
Spence, H. E. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (02) :934-951
[10]   A background correction algorithm for Van Allen Probes MagEIS electron flux measurements [J].
Claudepierre, S. G. ;
O'Brien, T. P. ;
Blake, J. B. ;
Fennell, J. F. ;
Roeder, J. L. ;
Clemmons, J. H. ;
Looper, M. D. ;
Mazur, J. E. ;
Mulligan, T. M. ;
Spence, H. E. ;
Reeves, G. D. ;
Friedel, R. H. W. ;
Henderson, M. G. ;
Larsen, B. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (07) :5703-5727