Influence of Bacteria on Self-Healing Concrete

被引:0
|
作者
Munoz-Perez, Socrates [1 ]
Carlos-Sanchez, Jorge [1 ]
Peralta-Sanchez, Miguel [1 ]
机构
[1] Univ Senor Sipan, Fac Ingn Arquitectura & Urbanismo, Escuela Profes Ingn Civil, Chiclayo, Peru
来源
UIS INGENIERIAS | 2023年 / 22卷 / 01期
关键词
bacteria; bacillus; mechanical properties; microbial elements; subtillis; ureolysis; self-healing; cells; crack healing; cracking; calcium carbonate; COMPRESSIVE STRENGTH; BACILLUS-SUBTILIS; PRECIPITATION; CRACKS; MECHANISMS; PARAMETERS; CARBONATE; BIOCHAR;
D O I
10.18273/revuin.v22n1-2023007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This document contemplates a critical reflection of the technological advances in biological and chemical tests that concrete is subjected to through the incorporation of bacteria, with the aim of knowing the different microbial elements that have biomineralization properties capable of self-healing in concrete. Likewise, the methods and applications of bacteria in concrete were reviewed in order to improve its mechanical properties to the different demands placed on modern structures, and at the same time contribute to the reduction of gases that are harmful to the environment. In the development of this manuscript, 80 articles indexed between the years 2017 to 2021 were reviewed, distributed as follows, 51 in Scopus, 17 in Ebsco, and 12 in SciencieDirect, pointing out and describing that microbial concrete has a promising approach in the future. Near. The results achieved with the incorporation of the different Bacillus bacteria, such as Bacillus subtillis, B, cohnii, B. pasteurii, B. pseudofirmus, B. megaterium among others, in different concentrations of cells / ml., Showed great effectiveness in the crack healing, also increasing resistance to compression, bending and traction in concrete. Based on the literary review, it is concluded that the microbial precipitation of calcium carbonate by ureolysis in the concrete matrix mitigates cracking, improves strength, increases durability and, therefore, reduces costs in repairing structures.
引用
收藏
页码:69 / 86
页数:18
相关论文
共 50 条
  • [21] Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete
    Alazhari, Mohamed
    Sharma, Trupti
    Heath, Andrew
    Cooper, Richard
    Paine, Kevin
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 160 : 610 - 619
  • [22] Effect of bacteria on the self-healing ability of concrete containing zeolite
    Mohammadreza Baradaran
    Mahmoud Sadeghpour
    Innovative Infrastructure Solutions, 2023, 8
  • [23] Effect of bacteria on the self-healing ability of fly ash concrete
    Sadeghpour, Mahmoud
    Baradaran, Mohammadreza
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 364
  • [24] Potential application of bacteria to improve the self-healing and strength of concrete
    Vashisht R.
    Shukla A.
    Journal of Building Pathology and Rehabilitation, 2020, 5 (1)
  • [25] Application of bacteria as self-healing agent for the development of sustainable concrete
    Jonkers, Henk M.
    Thijssen, Arjan
    Muyzer, Gerard
    Copuroglu, Oguzhan
    Schlangen, Erik
    ECOLOGICAL ENGINEERING, 2010, 36 (02) : 230 - 235
  • [26] Advancements in bacteria based self-healing concrete and the promise of modelling
    Bagga, Manpreet
    Hamley-Bennett, Charlotte
    Alex, Aleena
    Freeman, Brubeck L.
    Justo-Reinoso, Ismael
    Mihai, Iulia C.
    Gebhard, Susanne
    Paine, Kevin
    Jefferson, Anthony
    Masoero, Enrico
    Ofiteru, Irina D.
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 358
  • [27] Bacteria based self healing concrete - A review
    Vijay, Kunamineni
    Murmu, Meena
    Deo, Shirish V.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 152 : 1008 - 1014
  • [28] A Review of Self-Healing Concrete for Damage Management of Structures
    De Belie, Nele
    Gruyaert, Elke
    Al-Tabbaa, Abir
    Antonaci, Paola
    Baera, Cornelia
    Bajare, Diana
    Darquennes, Aveline
    Davies, Robert
    Ferrara, Liberato
    Jefferson, Tony
    Litina, Chrysoula
    Miljevic, Bojan
    Otlewska, Anna
    Ranogajec, Jonjaua
    Roig-Flores, Marta
    Paine, Kevin
    Lukowski, Pawel
    Serna, Pedro
    Tulliani, Jean-Marc
    Vucetic, Snezana
    Wang, Jianyun
    Jonkers, Henk M.
    ADVANCED MATERIALS INTERFACES, 2018, 5 (17):
  • [29] Crack self-healing in bio-green concrete
    V. Zhang, Lei
    Nehdi, Moncef L.
    Suleiman, Ahmed R.
    Allaf, Malihe Mehdizadeh
    Gan, Manguang
    Marani, Afshin
    Tuyan, Murat
    Bacteria, Crack Concrete
    COMPOSITES PART B-ENGINEERING, 2021, 227
  • [30] Distribution of Calcium Carbonate in the Process of Concrete Self-healing
    Qian Chunxiang
    Li Ruiyang
    Luo Mian
    Chen Huaicheng
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2016, 31 (03): : 557 - 562