Deep generative modeling and clustering of single cell Hi -C data

被引:9
作者
Liu, Qiao [1 ]
Zengt, Wanwen [1 ]
Zhang, Wei [2 ]
Wang, Sicheng [3 ]
Chen, Hongyang [4 ]
Jiang, Rui [5 ]
Zhou, Mu [6 ]
Zhang, Shaoting [7 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA USA
[2] Shandong Univ, Dept Biomed Engn, Jinan, Peoples R China
[3] UCSD, Dept Comp Sci & Engn, La Jolla, CA USA
[4] Zhejiang Lab, Hangzhou, Peoples R China
[5] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[6] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ USA
[7] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
single cell; 3D genome; deep learning; unsupervised learning; CHROMATIN ACCESSIBILITY; REVEALS PRINCIPLES; GENOME; TECHNOLOGIES;
D O I
10.1093/bib/bbac494
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering 3D genome conformation is important for understanding gene regulation and cellular function at a spatial level. The recent advances of single cell Hi -C technologies have enabled the profiling of the 3D architecture of DNA within individual cell, which allows us to study the cell -to -cell variability of 3D chromatin organization. Computational approaches are in urgent need to comprehensively analyze the sparse and heterogeneous single cell Hi -C data. Here, we proposed scDEC-Hi-C, a new framework for single cell Hi -C analysis with deep generative neural networks. scDEC-Hi-C outperforms existing methods in terms of single cell Hi -C data clustering and imputation. Moreover, the generative power of scDEC-Hi-C could help unveil the differences of chromatin architecture across cell types. We expect that scDEC-Hi-C could shed light on deepening our understanding of the complex mechanism underlying the formation of chromatin contacts.
引用
收藏
页数:10
相关论文
共 52 条
  • [32] A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping
    Rao, Suhas S. P.
    Huntley, Miriam H.
    Durand, Neva C.
    Stamenova, Elena K.
    Bochkov, Ivan D.
    Robinson, James T.
    Sanborn, Adrian L.
    Machol, Ido
    Omer, Arina D.
    Lander, Eric S.
    Aiden, Erez Lieberman
    [J]. CELL, 2014, 159 (07) : 1665 - 1680
  • [33] Rosenberg A., 2007, P 2007 JOINT C EMP M, P410, DOI DOI 10.7916/D80V8N84
  • [34] Single-cell sequencing-based technologies will revolutionize whole-organism science
    Shapiro, Ehud
    Biezuner, Tamir
    Linnarsson, Sten
    [J]. NATURE REVIEWS GENETICS, 2013, 14 (09) : 618 - 630
  • [35] Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus
    Smith, Emily M.
    Lajoie, Bryan R.
    Jain, Gaurav
    Dekker, Job
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 98 (01) : 185 - 201
  • [36] 3D structures of individual mammalian genomes studied by single-cell Hi-C
    Stevens, Tim J.
    Lando, David
    Basu, Srinjan
    Atkinson, Liam P.
    Cao, Yang
    Lee, Steven F.
    Leeb, Martin
    Wohlfahrt, Kai J.
    Boucher, Wayne
    O'Shaughnessy-Kirwan, Aoife
    Cramard, Julie
    Faure, Andre J.
    Ralser, Meryem
    Blanco, Enrique
    Morey, Lluis
    Sanso, Miriam
    Palayret, Matthieu G. S.
    Lehner, Ben
    Di Croce, Luciano
    Wutz, Anton
    Hendrich, Brian
    Klenerman, Dave
    Laue, Ernest D.
    [J]. NATURE, 2017, 544 (7648) : 59 - +
  • [37] Stoeckius M, 2017, NAT METHODS, V14, P865, DOI [10.1038/NMETH.4380, 10.1038/nmeth.4380]
  • [38] Strehl Alexander, 2002, J. Mach. Learn. Res., V6
  • [39] Comprehensive Integration of Single-Cell Data
    Stuart, Tim
    Butler, Andrew
    Hoffman, Paul
    Hafemeister, Christoph
    Papalexi, Efthymia
    Mauck, William M., III
    Hao, Yuhan
    Stoeckius, Marlon
    Smibert, Peter
    Satija, Rahul
    [J]. CELL, 2019, 177 (07) : 1888 - +
  • [40] Changes in genome architecture and transcriptional dynamics progress independently of sensory experience during post-natal brain development
    Tan, Longzhi
    Ma, Wenping
    Wu, Honggui
    Zheng, Yinghui
    Xing, Dong
    Chen, Ritchie
    Li, Xiang
    Daley, Nicholas
    Deisseroth, Karl
    Xie, X. Sunney
    [J]. CELL, 2021, 184 (03) : 741 - +