Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist

被引:27
作者
Hendrix, Nils [1 ,2 ,3 ]
Hendrix, Ward [1 ,3 ]
van Dijke, Kees [4 ]
Maresch, Bas [5 ]
Maas, Mario [6 ]
Bollen, Stijn [7 ]
Scholtens, Alexander [8 ]
de Jonge, Milko [9 ]
Ong, Lee-Ling Sharon [2 ,10 ]
van Ginneken, Bram [3 ]
Rutten, Matthieu [1 ,3 ]
机构
[1] Jeroen Bosch Ziekenhuis, Radiol Dept, Henri Dunantstr 1, NL-5223 GZ Shertogenbosch, Netherlands
[2] Jheronimus Acad Data Sci, Sint Janssingel 92, NL-5211 DA Shertogenbosch, Netherlands
[3] Radboud Univ Nijmegen, Dept Med Imaging, Med Ctr, Geert Grootcpl Zuid 10, NL-6525 GA Nijmegen, Netherlands
[4] Noordwest Zickenhuisgrocp, Radiol Dept, Wilhelminalaan 12, NL-1815 JD Alkmaar, Netherlands
[5] Radiol Dept, Ziekenhuis Gelderse Vallei, Willy Brandtlaan 10, NL-6717 RP Ede, Netherlands
[6] Acad Med Ctr, Radiol & Nucl Med Dept, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[7] Groene Hart Zickenhuis, Radiol Dept, Bleulandweg 10, NL-2803 HH Gouda, Netherlands
[8] Radiol & Nucl Med Dept, Van Riebeeckweg 212, NL-1213 XZ Hilversum, Netherlands
[9] St Antonius Hosp, Radiol Dept, Soestwetering 1, NL-3543 AZ Utrecht, Netherlands
[10] Tilburg Univ, Cognit Sci & Artificial Intelligence Dept, Warandelaan 2, NL-5037 AB Tilburg, Netherlands
关键词
Scaphoid bone; Fractures; bone; Artificial intelligence; Multicenter study; Clinical decision support system; COST-EFFECTIVENESS; DIAGNOSIS; SCINTIGRAPHY;
D O I
10.1007/s00330-022-09205-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To assess how an artificial intelligence (AI) algorithm performs against five experienced musculoskeletal radiologists in diagnosing scaphoid fractures and whether it aids their diagnosis on conventional multi-view radiographs. Methods Four datasets of conventional hand, wrist, and scaphoid radiographs were retrospectively acquired at two hospitals (hospitals A and B). Dataset 1 (12,990 radiographs from 3353 patients, hospital A) and dataset 2 (1117 radiographs from 394 patients, hospital B) were used for training and testing a scaphoid localization and laterality classification component. Dataset 3 (4316 radiographs from 840 patients, hospital A) and dataset 4 (688 radiographs from 209 patients, hospital B) were used for training and testing the fracture detector. The algorithm was compared with the radiologists in an observer study. Evaluation metrics included sensitivity, specificity, positive predictive value (PPV), area under the characteristic operating curve (AUC), Cohen's kappa coefficient (kappa), fracture localization precision, and reading time. Results The algorithm detected scaphoid fractures with a sensitivity of 72%, specificity of 93%, PPV of 81%, and AUC of 0.88. The AUC of the algorithm did not differ from each radiologist (0.87 [radiologists' mean], p >= .05). AI assistance improved five out of ten pairs of inter-observer Cohen's kappa agreements (p < .05) and reduced reading time in four radiologists (p < .001), but did not improve other metrics in the majority of radiologists (p >= .05). Conclusions The AI algorithm detects scaphoid fractures on conventional multi-view radiographs at the level of five experienced musculoskeletal radiologists and could significantly shorten their reading time.
引用
收藏
页码:1575 / 1588
页数:14
相关论文
共 23 条
[1]   The diagnosis of recent scaphoid fractures: Review of the literature [J].
Blum, A. ;
Sauer, B. ;
Detreille, R. ;
Zabel, J. P. ;
Pierrucci, F. ;
Witte, Y. ;
Dap, F. .
JOURNAL DE RADIOLOGIE, 2007, 88 (05) :741-759
[2]   The suspected scaphoid injury: resource implications in the absence of magnetic resonance imaging [J].
Burns, M. J. ;
Aitken, S. A. ;
McRae, D. ;
Duckworth, A. D. ;
Gray, A. .
SCOTTISH MEDICAL JOURNAL, 2013, 58 (03) :143-148
[3]   X-ray diagnosis of acute scaphoid fractures [J].
Cheung, GC ;
Lever, CJ ;
Morris, AD .
JOURNAL OF HAND SURGERY-BRITISH AND EUROPEAN VOLUME, 2006, 31B (01) :104-109
[4]   Acute scaphoid fractures: guidelines for diagnosis and treatment [J].
Clementson, Martin ;
Bjorkman, Anders ;
Thomsen, Niels O. B. .
EFORT OPEN REVIEWS, 2020, 5 (02) :96-103
[5]   Comparison of MRI, CT and bone scintigraphy for suspected scaphoid fractures [J].
de Zwart, A. D. ;
Beeres, F. J. P. ;
Rhemrev, S. J. ;
Bartlema, K. ;
Schipper, I. B. .
European Journal of Trauma and Emergency Surgery, 2016, 42 (06) :725-731
[6]   Assessment of an AI Aid in Detection of Adult Appendicular Skeletal Fractures by Emergency Physicians and Radiologists: A Multicenter Cross-sectiona Diagnostic Study [J].
Duron, Loic ;
Ducarouge, Alexis ;
Gillibert, Andre ;
Laine, Julia ;
Allouche, Christian ;
Cherel, Nicolas ;
Zhang, Zekun ;
Nitche, Nicolas ;
Lacave, Elise ;
Pourchot, Alois ;
Felter, Adrien ;
Lassalle, Louis ;
Regnard, Nor-Eddine ;
Feydy, Antoine .
RADIOLOGY, 2021, 300 (01) :120-129
[7]   Incorporating Cone-Beam CT Into the Diagnostic Algorithm for Suspected Radiocarpal Fractures: A New Standard of Care? [J].
Gibney, Brian ;
Smith, Michelle ;
Moughty, Adrian ;
Kavanagh, Eoin C. ;
Hynes, Darragh ;
MacMahon, Peter J. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (05) :1117-1123
[8]   Proximal Pole Scaphoid Fractures: A Computed Tomographic Assessment of Outcomes [J].
Grewal, Ruby ;
Lutz, Kristina ;
MacDermid, Joy C. ;
Suh, Nina .
JOURNAL OF HAND SURGERY-AMERICAN VOLUME, 2016, 41 (01) :54-58
[9]   Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence [J].
Guermazi, Ali ;
Tannoury, Chadi ;
Kompel, Andrew J. ;
Murakami, Akira M. ;
Ducarouge, Alexis ;
Gillibert, Andre ;
Li, Xinning ;
Tournier, Antoine ;
Lahoud, Youmna ;
Jarraya, Mohamed ;
Lacave, Elise ;
Rahimi, Hamza ;
Pourchot, Alois ;
Parisien, Robert L. ;
Merritt, Alexander C. ;
Comeau, Douglas ;
Regnard, Nor-Eddine ;
Hayashi, Daichi .
RADIOLOGY, 2022, 302 (03) :627-636
[10]   Development and Validation of a Convolutional Neural Network for Automated Detection of Scaphoid Fractures on Conventional Radiographs [J].
Hendrix, Nils ;
Scholten, Ernst ;
Vernhout, Bastiaan ;
Bruijnen, Stefan ;
Maresch, Bas ;
de Jong, Mathijn ;
Diepstraten, Suzanne ;
Bollen, Stijn ;
Schalekamp, Steven ;
de Rooij, Maarten ;
Scholtens, Alexander ;
Hendrix, Ward ;
Samson, Tijs ;
Ong, Lee-Ling Sharon ;
Postma, Eric ;
van Ginneken, Bram ;
Rutten, Matthieu .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (04)