External validation of the computerized analysis of TRUS of the prostate with the ANNA/C-TRUS system: a potential role of artificial intelligence for improving prostate cancer detection

被引:11
|
作者
Lorusso, Vito [1 ,2 ,3 ]
Kabre, Boukary [4 ]
Pignot, Geraldine [1 ]
Branger, Nicolas [1 ]
Pacchetti, Andrea [1 ]
Thomassin-Piana, Jeanne [5 ]
Brunelle, Serge [6 ]
Nicolai, Nicola [2 ]
Musi, Gennaro [3 ,7 ]
Salem, Naji [8 ]
Montanari, Emanuele [3 ,9 ]
de Cobelli, Ottavio [3 ,7 ]
Gravis, Gwenaelle [10 ]
Walz, Jochen [1 ]
机构
[1] Inst Paoli Calmettes Canc Ctr, Dept Urol, Marseille, France
[2] Fdn IRCCS Ist Nazl Tumori, Urol Unit, Milan, Italy
[3] Univ Milan, Milan, Italy
[4] CHU Yalgado Ouedraogo, Dept Urol, Ouagadougou, Burkina Faso
[5] Inst Paoli Calmettes Canc Ctr, Dept Pathol, Marseille, France
[6] Inst Paoli Calmettes Canc Ctr, Dept Radiol, Marseille, France
[7] IRCCS, Dept Urol, IEO, European Inst Oncol, Milan, Italy
[8] Inst Paoli Calmettes Canc Ctr, Dept Radiotherapy, Marseille, France
[9] Fdn IRCCS Ca Granda Osped Maggiore Policlin, Dept Urol, Milan, Italy
[10] Inst Paoli Calmettes Canc Ctr, Dept Oncol, Marseille, France
关键词
Prostate cancer; Imaging; Ultrasound; TRUS; Transrectal; Artificial intelligence; Diagnosis; ANNA; C-TRUS; Biopsy; NETWORK ANALYSIS ANNA; MULTIPARAMETRIC MRI; DIAGNOSIS; ULTRASOUND; BIOPSY;
D O I
10.1007/s00345-022-03965-w
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Purpose Prostate cancer (PCa) imaging has been revolutionized by the introduction of multi-parametric Magnetic Resonance Imaging (mpMRI). Transrectal ultrasound (TRUS) has always been considered a low-performance modality. To overcome this, a computerized artificial neural network analysis (ANNA/C-TRUS) of the TRUS based on an artificial intelligence (AI) analysis has been proposed. Our aim was to evaluate the diagnostic performance of the ANNA/C-TRUS system and its ability to improve conventional TRUS in PCa diagnosis. Methods We retrospectively analyzed data from 64 patients with PCa and scheduled for radical prostatectomy who underwent TRUS followed by ANNA/C-TRUS analysis before the procedure. The results of ANNA/C-TRUS analysis with whole mount sections from final pathology. Results On a per-sectors analysis, sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV) and accuracy were 62%, 81%, 80%, 64% and 78% respectively. The values for the detection of clinically significant prostate cancer were 69%, 77%, 88%, 50% and 75%. The diagnostic values for high grade tumours were 70%, 74%, 91%, 41% and 74%, respectively. Cancer volume (<= 0.5 or greater) did not influence the diagnostic performance of the ANNA/C-TRUS system. Conclusions ANNA/C-TRUS represents a promising diagnostic tool and application of AI for PCa diagnosis. It improves the ability of conventional TRUS to diagnose prostate cancer, preserving its simplicity and availability. Since it is an AI system, it does not hold the inter-observer variability nor a learning curve. Multicenter biopsy-based studies with the inclusion of an adequate number of patients are needed to confirm these results.
引用
收藏
页码:619 / 625
页数:7
相关论文
共 50 条
  • [31] External Validation of an Artificial Neural Network for Prostate Cancer Detection with Population Dependent Variability
    Bender, M.
    Stephan, Carsten
    Cammann, Henning
    Miller, Kurt
    Lein, Michael
    Jung, Klaus
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2009, 14 : 115 - 115
  • [32] Correlation of multi-parametric MRI prostate imaging reporting and data system (PIRADS) scoring with cancer detection rates on MRI/TRUS fusion prostate biopsies
    Hasan, R.
    Alexander, N.
    Amer, T.
    Robinson, J.
    Nairn, B.
    Chanock, D.
    Mclaughlin, G.
    Gurun, M.
    Clark, R.
    SCOTTISH MEDICAL JOURNAL, 2016, 61 (01) : NP24 - NP25
  • [33] Interreader agreement with Prostate Imaging Reporting and Data System (PI-RADS) Version 2.1 to improve the detection rate of prostate cancer in MRI/TRUS software fusion prostate biopsy
    Kim, J.
    Song, W. H.
    Lee, D. D.
    Lee, S. S.
    Nam, J. K.
    Ryu, H. S.
    Kim, T. U.
    Park, S. W.
    EUROPEAN UROLOGY, 2022, 81 : S722 - S723
  • [34] A pathplogists' ally - harnessing the potential of artificial intelligence in prostate cancer diagnosis: an analytical validation study
    Maclean, F.
    Petrucco, C.
    Phang, M.
    de Souza, A.
    Peters, M.
    Kumar, A.
    Warren, C.
    VIRCHOWS ARCHIV, 2024, 485 : S18 - S18
  • [35] The value of artificial intelligence for detection and grading of prostate cancer in human prostatectomy specimens: a validation study
    Maíra Suzuka Kudo
    Vinicius Meneguette Gomes de Souza
    Carmen Liane Neubarth Estivallet
    Henrique Alves de Amorim
    Fernando J. Kim
    Katia Ramos Moreira Leite
    Matheus Cardoso Moraes
    Patient Safety in Surgery, 16
  • [36] The value of artificial intelligence for detection and grading of prostate cancer in human prostatectomy specimens: a validation study
    Kudo, Maira Suzuka
    Gomes de Souza, Vinicius Meneguette
    Neubarth Estivallet, Carmen Liane
    de Amorim, Henrique Alves
    Kim, Fernando J.
    Moreira Leite, Katia Ramos
    Moraes, Matheus Cardoso
    PATIENT SAFETY IN SURGERY, 2022, 16 (01)
  • [37] EXTERNAL VALIDATION OF AN ARTIFICIAL NEU TRAL NETWORK (ANN) AND TWO NOMOGRAMS FOR PROSTATE CANCER DETECTION
    Ecke, T.
    Bartel, P.
    Hallmann, S.
    Koch, S.
    Ruttloff, J.
    Cammann, H.
    Lein, M.
    Miller, K.
    Stephan, C.
    TUMOR BIOLOGY, 2010, 31 : S61 - S62
  • [38] The role of artificial intelligence for the detection of clinically significant prostate cancer at multiparametric magnetic resonance imaging
    Quarta, L.
    Scuderi, S.
    Gandaglia, G.
    Stabile, A.
    Marzorati, C.
    Russo, T.
    Brembilla, G.
    Camisassa, E.
    Leni, R.
    Cucchiara, V.
    Bianchi, M.
    Cannoletta, D.
    Zaurito, P.
    Barletta, F.
    Cosenza, M.
    Robesti, D.
    Mazzone, E.
    De Cobelli, F.
    Montorsi, F.
    Briganti, A.
    EUROPEAN UROLOGY, 2024, 85 : S61 - S61
  • [39] Expression Analysis of miRNAs and Their Potential Role as Biomarkers for Prostate Cancer Detection
    Bergez-Hernandez, Fernando
    Arambula-Meraz, Eliakym
    Alvarez-Arrazola, Marco
    Irigoyen-Arredondo, Martin
    Luque-Ortega, Fred
    Martinez-Camberos, Alejandra
    Cedano-Prieto, Dora
    Contreras-Gutierrez, Jose
    Martinez-Valenzuela, Carmen
    Garcia-Magallanes, Noemi
    AMERICAN JOURNAL OF MENS HEALTH, 2022, 16 (05)
  • [40] Using an artificial intelligence model to detect and localize visible clinically significant prostate cancer in prostate magnetic resonance imaging: a multicenter external validation study
    Sun, Zhaonan
    Wang, Kexin
    Wu, Chenchao
    Chen, Yuntian
    Kong, Zixuan
    She, Lilan
    Song, Bin
    Luo, Ning
    Wu, Pengsheng
    Wang, Xiangpeng
    Zhang, Xiaodong
    Wang, Xiaoying
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (01) : 43 - 60