Effect of the Photonic Band Gap Position on the Photocatalytic Activity of Anodic Titanium Oxide Photonic Crystals

被引:3
作者
Belokozenko, M. A. [1 ]
Sapoletova, N. A. [1 ]
Kushnir, S. E. [1 ]
Napol'skii, K. S. [1 ]
机构
[1] Moscow State Univ, Moscow 119991, Russia
关键词
anodic titanium oxide; photonic crystal; photonic band gap; photocatalyst; anatase; OPTICAL-PROPERTIES; TIO2; NANOTUBES;
D O I
10.1134/S0036023623602787
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The slowing down of the group velocity of light at the edges of the photonic band gap is one of the important optical effects observed in photonic crystals. The "slow light" effect is used in photocatalysis to enhance the photocatalytic activity of semiconductors. In this work, anatase photonic crystals with different spectral positions of the photonic band gap (390-1283 nm, measured in water) were obtained. It has been shown that the maximum photocatalytic activity in the photodegradation of methylene blue is exhibited by photonic crystals with the position of one of the photonic band gaps near the intrinsic absorption edge of the semiconductor (410 nm). At the same time, the photocatalytic activity of an anatase photonic crystal increases by 30% when the photonic band gap of the third rather than the first order is located near the absorption edge of the semiconductor.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 50 条
  • [1] Effect of post-treatment on photocatalytic activity of anodic titania photonic crystals
    Sapoletova, Nina A.
    Kushnir, Sergey E.
    Ulyanov, Alexander N.
    Valeev, Rishat G.
    Boytsova, Olga, V
    Roslyakov, Ilya, V
    Napolskii, Kirill S.
    OPTICAL MATERIALS, 2023, 144
  • [2] A new approach to the synthesis of anodic titania photonic crystals with desired position and high reflectance of photonic band gaps
    Cherepanova, Yulia M.
    Sapoletova, Nina A.
    Kushnir, Sergey E.
    Roslyakov, Ilya, V
    Napolskii, Kirill S.
    OPTICAL MATERIALS, 2023, 146
  • [3] Application on the photonic band gap of titanium dioxide photonic crystals
    Li Xiaojing
    Qiao Guanjun
    Chen Jierong
    Xi, Zhou
    PROGRESS IN CHEMISTRY, 2008, 20 (04) : 491 - 498
  • [4] Anodic titania photonic crystals with high reflectance within photonic band gap via pore shape engineering
    Sadykov, A. I.
    Kushnir, S. E.
    Sapoletova, N. A.
    Ivanov, V. K.
    Napolskii, K. S.
    SCRIPTA MATERIALIA, 2020, 178 : 13 - 17
  • [5] Anodizing charge density controls the porosity of anodic titanium oxide photonic crystals
    Belokozenko, M. A.
    Kushnir, S. E.
    Sapoletova, N. A.
    Napolskii, K. S.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2023, 362
  • [6] One-Dimensional Photonic Crystals Based on Anodic Titanium Oxide with a High Q Factor
    A. I. Sadykov
    S. E. Kushnir
    N. A. Sapoletova
    K. S. Napolskii
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2020, 14 : 42 - 46
  • [7] One-Dimensional Photonic Crystals Based on Anodic Titanium Oxide with a High Q Factor
    Sadykov, A. I.
    Kushnir, S. E.
    Sapoletova, N. A.
    Napolskii, K. S.
    JOURNAL OF SURFACE INVESTIGATION, 2020, 14 (01): : 42 - 46
  • [8] Titania Photonic Crystals with Precise Photonic Band Gap Position via Anodizing with Voltage versus Optical Path Length Modulation
    Ermolaev, Georgy A.
    Kushnir, Sergey E.
    Sapoletova, Nina A.
    Napolskii, Kirin S.
    NANOMATERIALS, 2019, 9 (04)
  • [9] Experimental study on photonic band gap extension in heterostructural photonic crystals
    Song, QH
    Liu, LY
    Wang, WC
    Xu, L
    INTERNATIONAL SYMPOSIUM ON PHOTONIC GLASS (ISPG 2002), 2003, 5061 : 234 - 238
  • [10] Photonic band gap engineering in 2D photonic crystals
    Kalra, Yogita
    Sinha, R-K
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (06): : 1155 - 1164