On straightening for Segal spaces

被引:1
作者
Nuiten, Joost [1 ]
机构
[1] Univ Toulouse 3 Paul Sabatier, IMT, 118 Route Narbonne, F-31062 Toulouse 9, France
基金
欧洲研究理事会;
关键词
straightening; cocartesian fibrations; higher categories; CATEGORIES; LOCALIZATION; (INFINITY; MODEL;
D O I
10.1112/S0010437X23007674
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The straightening-unstraightening correspondence of Grothendieck-Lurie provides an equivalence between cocartesian fibrations between $(\infty, 1)$-categories and diagrams of $(\infty, 1)$-categories. We provide an alternative proof of this correspondence, as well as an extension of straightening-unstraightening to all higher categorical dimensions. This is based on an explicit combinatorial result relating two types of fibrations between double categories, which can be applied inductively to construct the straightening of a cocartesian fibration between higher categories.
引用
收藏
页码:586 / 656
页数:72
相关论文
共 43 条
  • [31] Lurie J., 2009, PREPRINT
  • [32] A bivariant Yoneda lemma and (∞, 2)-categories of correspondences
    Macpherson, Andrew w
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (06): : 2689 - 2774
  • [33] Nuiten J, 2016, Arxiv, DOI arXiv:1612.03800
  • [34] Radulescu-Banu A., 2009, PREPRINT, DOI [10.48550/arXiv.math/0610009, DOI 10.48550/ARXIV.MATH/0610009]
  • [35] Rasekh N, 2021, Arxiv, DOI arXiv:2108.06168
  • [36] A model for the homotopy theory of homotopy theory
    Rezk, C
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (03) : 973 - 1007
  • [37] A cartesian presentation of weak n-categories
    Rezk, Charles
    [J]. GEOMETRY & TOPOLOGY, 2010, 14 (01): : 521 - 571
  • [38] Riehl E., 2018, High. Struct, V2, P116
  • [39] Riehl E., 2022, Elements of -category theory, V194
  • [40] Homotopy coherent adjunctions and the formal theory of monads
    Riehl, Emily
    Verity, Dominic
    [J]. ADVANCES IN MATHEMATICS, 2016, 286 : 802 - 888