On straightening for Segal spaces

被引:1
作者
Nuiten, Joost [1 ]
机构
[1] Univ Toulouse 3 Paul Sabatier, IMT, 118 Route Narbonne, F-31062 Toulouse 9, France
基金
欧洲研究理事会;
关键词
straightening; cocartesian fibrations; higher categories; CATEGORIES; LOCALIZATION; (INFINITY; MODEL;
D O I
10.1112/S0010437X23007674
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The straightening-unstraightening correspondence of Grothendieck-Lurie provides an equivalence between cocartesian fibrations between $(\infty, 1)$-categories and diagrams of $(\infty, 1)$-categories. We provide an alternative proof of this correspondence, as well as an extension of straightening-unstraightening to all higher categorical dimensions. This is based on an explicit combinatorial result relating two types of fibrations between double categories, which can be applied inductively to construct the straightening of a cocartesian fibration between higher categories.
引用
收藏
页码:586 / 656
页数:72
相关论文
共 43 条
  • [1] Ayala D., 2020, High. Struct., V4, P168
  • [2] Ayala D, 2022, Arxiv, DOI arXiv:1910.14602
  • [3] Factorization homology I: Higher categories
    Ayala, David
    Francis, John
    Rozenblyum, Nick
    [J]. ADVANCES IN MATHEMATICS, 2018, 333 : 1042 - 1177
  • [4] ON THE UNICITY OF THE THEORY OF HIGHER CATEGORIES
    Barwick, Clark
    Schommer-Pries, Christopher
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 34 (04) : 1011 - 1058
  • [5] Iterated wreath product of the simplex category and iterated loop spaces
    Berger, Clemens
    [J]. ADVANCES IN MATHEMATICS, 2007, 213 (01) : 230 - 270
  • [6] Fibred 2-categories and bicategories
    Buckley, Mitchell
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (06) : 1034 - 1074
  • [7] C. I, 2014, Factorization homology as a fully extended topological field theory
  • [8] Calaque D, 2021, Arxiv, DOI arXiv:2108.02473
  • [9] A note on the (∞, n)-category of cobordisms
    Calaque, Damien
    Scheimbauer, Claudia
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (02): : 533 - 655
  • [10] Segal objects and the Grothendieck construction
    de Brito, Pedro Boavida
    [J]. ALPINE BOUQUET OF ALGEBRAIC TOPOLOGY, 2018, 708 : 19 - 44