A viral insulin-like peptide inhibits IGF-1 receptor phosphorylation and regulates IGF1R gene expression

被引:4
作者
Chrudinova, Martina [1 ]
Kirk, Nicholas S. [2 ,3 ]
Chuard, Aurelien [1 ]
Venugopal, Hari [4 ]
Zhang, Fa [5 ]
Lubos, Marta [6 ]
Gelfanov, Vasily [7 ]
Panikova, Terezie [6 ]
Zakova, Lenka [6 ]
Cutone, Julianne [1 ]
Mojares, Matthew [1 ]
DiMarchi, Richard [5 ]
Jiracek, Jiri [6 ]
Altindis, Emrah [1 ,8 ]
机构
[1] Boston Coll, Biol Dept, Chestnut Hill, MA USA
[2] WEHI, Parkville, Vic, Australia
[3] Univ Melbourne, Fac Med Dent & Hlth Sci, Dept Med Biol, Parkville, Vic, Australia
[4] Monash Univ, Ramaciotti Ctr Cryo Electron Microscopy, Clayton, Vic, Australia
[5] Indiana Univ, Dept Chem, Bloomington, IN USA
[6] Inst Organ Chem & Biochem, Czech Acad Sci, Prague, Czech Republic
[7] Novo Nordisk, Indianapolis, IN USA
[8] Boston Coll, Biol Dept, Higgins Hall,140 Commonwealth Ave, Chestnut Hill, MA 02467 USA
基金
澳大利亚研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
Viral insulin/IGF-1 like peptides (VILPs); IGF-1; Insulin; IGF1; receptor; IGF1 receptor inhibition; Biased signaling; Iridoviridae; GROWTH-FACTOR-I; CRYO-EM; METABOLISM; EVOLUTION; BINDING; CLONING; ACID;
D O I
10.1016/j.molmet.2023.101863
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) closely resembling human insulin and IGF-1. This study aims to characterize the impact of Mandarin fish ranavirus (MFRV) and Lymphocystis disease virus-Sa (LCDV-Sa) VILPs on the insulin/IGF system for the first time. Methods: We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor isoform A (IR-A), isoform B (IR-B) or IGF-1 receptor (IGF1R), and AML12 murine hepatocytes, we characterized receptor binding, insulin/IGF signaling. We further characterized the VILPs' effects of proliferation and IGF1R and IR gene expression, and compared them to native ligands. Additionally, we performed insulin tolerance test in CB57BL/6 J mice to examine in vivo effects of VILPs on blood glucose levels. Finally, we employed cryo-electron microscopy (cryoEM) to analyze the structure of scMFRV-VILP in complex with the IGF1R ectodomain. Results: VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRVVILP exhibited a particularly strong affinity for IGF1R, with a mere 10 -fold decrease compared to human IGF-1. At high concentrations, scMFRVVILP selectively reduced IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation (Ras/MAPK pathway), while leaving Akt phosphorylation (PI3K/Akt pathway) unaffected, indicating a potential biased inhibitory function. Prolonged exposure to MFRV-VILP led to a significant decrease in IGF1R gene expression in IGF1R overexpressing cells and AML12 hepatocytes. Furthermore, insulin tolerance test revealed scMFRVVILP's sustained glucose -lowering effect compared to insulin and IGF-1. Finally, cryo-EM analysis revealed that scMFRV-VILP engages with IGF1R in a manner closely resembling IGF-1 binding, resulting in a highly analogous structure. Conclusions: This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high concentrations, selectively inhibiting IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation, without affecting Akt phosphorylation. In addition, MFRV-VILP specifically regulates IGF-1R gene expression and IGF1R protein levels without affecting IR. CryoEM analysis confirms that scMFRV-VILP' binding to IGF1R is mirroring the interaction pattern observed with IGF-1. These findings offer valuable insights into IGF1R action and inhibition, suggesting potential applications in development of IGF1R specific inhibitors and advancing long-lasting insulins. (c) 2024 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:19
相关论文
共 50 条
[21]   Occlusal stimuli influence on the expression of IGF-1 and the IGF-1 receptor in the rat periodontal ligament [J].
Termsuknirandorn, Saewadee ;
Hosomichi, Jun ;
Soma, Kunimichi .
ANGLE ORTHODONTIST, 2008, 78 (04) :610-616
[22]   The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1) [J].
Wolfe, Andrew ;
Divall, Sara ;
Wu, Sheng .
FRONTIERS IN NEUROENDOCRINOLOGY, 2014, 35 (04) :558-572
[23]   Association of IGF1 and IGF1R gene polymorphisms with high myopia in a Han Chinese population [J].
Wang, Pu ;
Liu, Xiaoqi ;
Ye, Zimeng ;
Gong, Bo ;
Yang, Yin ;
Zhang, Dingding ;
Wu, Xuemei ;
Zheng, Hong ;
Li, Yuanfeng ;
Yang, Zhenglin ;
Shi, Yi .
OPHTHALMIC GENETICS, 2017, 38 (02) :122-126
[24]   Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines [J].
Romand, Sandrine ;
Jostock, Thomas ;
Fornaro, Mara ;
Schmidt, Joerg ;
Ritter, Anett ;
Wilms, Burkhard ;
Laux, Holger .
BIOTECHNOLOGY AND BIOENGINEERING, 2016, 113 (05) :1094-1101
[25]   Porcine IGF1 synonymous mutation alter gene expression and protein binding affinity with IGF1R [J].
Cheng, Yunyun ;
Liu, Songcai ;
Wang, Gang ;
Wei, Wenzhen ;
Huang, Shan ;
Yang, Rui ;
Geng, Hongwei ;
Li, Haoyang ;
Song, Jie ;
Sun, Lidan ;
Yu, Hao ;
Hao, Linlin .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 116 :23-30
[26]   EXERCISE ON INSULIN-LIKE GROWTH FACTOR-1 (IGF-1) IN ELDERLY [J].
Alarcon Meza, Edgar Ismael ;
Ochoa-Martinez, Paulina Yesica ;
Hall-Lopez, Javier Arturo ;
Pina Diaz, Daniel Alejandro ;
Teixeira, Ana Maria ;
Martin Dantas, Estelio Henrique .
REVISTA IBEROAMERICANA DE PSICOLOGIA DEL EJERCICIO Y EL DEPORTE, 2020, 15 (02) :105-108
[27]   Cloning and Spatiotemporal Expression Analysis of IGF1R Gene cDNA in Alopex lagopus (Arctic Fox) [J].
Xu, Wei ;
Fu, Hualin ;
Meng, Xiangyu ;
Sun, Yiwen ;
Ning, Fangyong ;
Du, Zhiheng .
LIFE-BASEL, 2025, 15 (05)
[28]   Temporal expression pattern of insulin-like growth factors (IGF-1 and IGF-2) ligands and their receptors (IGF-1R and IGF-2R) in buffalo (Bubalus bubalis) embryos produced in vitro [J].
Chandra, Vikash ;
Kumar, G. Sai ;
Sharma, G. Taru .
LIVESTOCK SCIENCE, 2011, 135 (2-3) :225-230
[29]   INSULIN-LIKE GROWTH FACTOR-I (IGF-1) GENE-EXPRESSION IN PORCINE OVARIAN TISSUE [J].
CHARLTON, ST ;
CAMERON, BJ ;
GLIMM, DR ;
FOXCROFT, GR ;
KENNELLY, JJ .
CANADIAN JOURNAL OF ANIMAL SCIENCE, 1993, 73 (02) :253-257
[30]   Increased expression of insulin-like growth factor 1 (IGF-1) in multinodular non toxic goiter [J].
Perlino, E ;
Ciampolillo, A ;
Maenza, S ;
Marra, E ;
DeRobertis, O ;
Ambrosi, A ;
Giorgino, R ;
Quagliariello, E .
ONCOLOGY REPORTS, 1996, 3 (04) :753-757