UNSUPERVISED DYNAMIC CONVOLUTIONAL NEURAL NETWORK MODEL FOR HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION

被引:2
|
作者
Yu, Haoyang [1 ]
Ling, Zhixin [1 ]
Zheng, Ke [2 ]
Li, Jiaxin [3 ,4 ]
Liang, Siqi [1 ]
Gao, Lianru [3 ]
机构
[1] Dalian Maritime Univ, CHIRS, Informat Sci & Technol Coll, Dalian 116026, Peoples R China
[2] Liaocheng Univ, Coll Geog & Environm, Liaocheng 252000, Shandong, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Unsupervised learning; image fusion; hyperspectral image; multispectral image; dynamic convolutional neural network;
D O I
10.1109/IGARSS52108.2023.10282786
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In recent years, fusion methods based on unsupervised deep learning have achieved impressive performance in the fusion of hyperspectral image (HSI) and multispectral image (MSI). However, there are still some limitations in the current research. Most existing fusion methods only apply to simulated data and need more verification on real data sets. To solve these issues, this paper designed an unsupervised dynamic convolutional neural network fusion model (UDCNN), which can adaptively learn the radiometric difference between HSI and MSI. This model achieves better performance on simulated data compared with related unsupervised deep learning methods, and achieves more accurate results on real data through classification-oriented application of the fusion results.
引用
收藏
页码:6270 / 6273
页数:4
相关论文
共 50 条
  • [31] HYPERSPECTRAL SUPER-RESOLUTION BY UNSUPERVISED CONVOLUTIONAL NEURAL NETWORK AND SURE
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Mura, Mauro Dalla
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 903 - 906
  • [32] SFFNet: Staged Feature Fusion Network of Connecting Convolutional Neural Networks and Graph Convolutional Neural Networks for Hyperspectral Image Classification
    Li, Hao
    Xiong, Xiaorui
    Liu, Chaoxian
    Ma, Yong
    Zeng, Shan
    Li, Yaqin
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [33] Unsupervised Hyperspectral and Multispectral Image Fusion With Deep Spectral-Spatial Collaborative Constraint
    Yu, Haoyang
    Ling, Zhixin
    Zheng, Ke
    Gao, Lianru
    Li, Jiaxin
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [34] Deep Unsupervised Blind Hyperspectral and Multispectral Data Fusion
    Li, Jiaxin
    Zheng, Ke
    Yao, Jing
    Gao, Lianru
    Hong, Danfeng
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [35] Deep Unsupervised Blind Hyperspectral and Multispectral Data Fusion
    Li, Jiaxin
    Zheng, Ke
    Yao, Jing
    Gao, Lianru
    Hong, Danfeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [36] A Multi-branch Feature Fusion Model Based on Convolutional Neural Network for Hyperspectral Remote Sensing Image Classification
    Zhang, Jinli
    Chen, Ziqiang
    Ji, Yuanfa
    Sun, Xiyan
    Bai, Yang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 147 - 156
  • [37] MSFF: A Multi-Scale Feature Fusion Convolutional Neural Network for Hyperspectral Image Classification
    Gong, Gu
    Wang, Xiaopeng
    Zhang, Jiahua
    Shang, Xiaodi
    Pan, Zhicheng
    Li, Zhiyuan
    Zhang, Junshi
    ELECTRONICS, 2025, 14 (04):
  • [38] Spatial Spectral Joint Correction Network for Hyperspectral and Multispectral Image Fusion
    Wang, Tingting
    Xu, Yang
    Wu, Zebin
    Wei, Zhihui
    PATTERN RECOGNITION, ACPR 2021, PT II, 2022, 13189 : 16 - 27
  • [39] Low Light Image Enhancement by Multispectral Fusion and Convolutional Neural Networks
    Mei, Lin
    Jung, Cheolkon
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 203 - 209
  • [40] An Unsupervised Laplacian Pyramid Network for Radiometrically Accurate Data Fusion of Hyperspectral and Multispectral Imagery
    Huang, Sihan
    Messinger, David W.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60