The L2-torsion for representations of hyperbolic lattices

被引:0
作者
Wassermann, Benjamin [1 ]
机构
[1] Karlsruher Inst Technol, Stuttgart, Germany
关键词
L2-Invariants; analytic torsion; topological torsion; ANALYTIC-TORSION; R-TORSION; GROWTH; MANIFOLDS; HOMOLOGY; CHEEGER; THEOREM;
D O I
10.1142/S1793525323500152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove equality of analytic and topological L-2-torsion associated with an odd-dimensional finite volume hyperbolic manifold and a representation of the fundamental group which extends to the ambient Lie group. This generalizes a previous result due to Luck and Schick. Alternatively, this result can be regarded as the L-2-analog of recent work by Muller and Rochon.
引用
收藏
页码:55 / 103
页数:49
相关论文
共 37 条
  • [1] ON THE GROWTH OF TORSION IN THE COHOMOLOGY OF ARITHMETIC GROUPS
    Ash, A.
    Gunnells, P. E.
    Mcconnell, M.
    Yasaki, D.
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2020, 19 (02) : 537 - 569
  • [2] Benedetti R., 1992, Lectures on hyperbolic geometry
  • [3] THE ASYMPTOTIC GROWTH OF TORSION HOMOLOGY FOR ARITHMETIC GROUPS
    Bergeron, Nicolas
    Venkatesh, Akshay
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2013, 12 (02) : 391 - 447
  • [4] BISMUT JM, 1992, ASTERISQUE, P7
  • [5] Analytic and Reidemeister torsion for representations in finite type Hilbert modules
    Burghelea, D
    Friedlander, L
    Kappeler, T
    McDonald, P
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (05) : 751 - 859
  • [6] Burghelea D, 1999, MATH NACHR, V208, P31
  • [7] Carey A, 1997, J REINE ANGEW MATH, V484, P153
  • [8] L(2)-TORSION INVARIANTS
    CAREY, AL
    MATHAI, V
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (02) : 377 - 409
  • [9] ANALYTIC TORSION AND THE HEAT-EQUATION
    CHEEGER, J
    [J]. ANNALS OF MATHEMATICS, 1979, 109 (02) : 259 - 321
  • [10] Durland P., 2013, THESIS RHEINISCHEN F