Exploring Explicitly Disentangled Features for Domain Generalization

被引:11
|
作者
Li, Jingwei [1 ,2 ]
Li, Yuan [1 ,2 ]
Wang, Huanjie [1 ,2 ]
Liu, Chengbao [1 ]
Tan, Jie [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 101408, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain generalization; feature disentanglement; Fourier transform; data augmentation;
D O I
10.1109/TCSVT.2023.3269534
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Domain generalization (DG) is a challenging task that aims to train a robust model with only labeled source data and can generalize well on unseen target data. The domain gap between the source and target data may degrade the performance. A plethora of methods resort to obtaining domain-invariant features to overcome the difficulties. However, these methods require sophisticated network designs or training strategies, causing inefficiency and complexity. In this paper, we first analyze and reclassify the features into two categories, i.e., implicitly disentangled ones and explicitly disentangled counterparts. Since we aim to design a generic algorithm for DG to alleviate the problems mentioned above, we focus more on the explicitly disentangled features due to their simplicity and interpretability. We find out that the shape features of images are simple and elegant choices based on our analysis. We extract the shape features from two aspects. In the aspect of networks, we propose Multi-Scale Amplitude Mixing (MSAM) to strengthen shape features at different layers of the network by Fourier transform. In the aspect of inputs, we propose a new data augmentation method called Random Shape Warping (RSW) to facilitate the model to concentrate more on the global structures of the objects. RSW randomly distorts the local parts of the images and keeps the global structures unchanged, which can further improve the robustness of the model. Our methods are simple yet efficient and can be conveniently used as plug-and-play modules. They can outperform state-of-the-art (SOTA) methods without bells and whistles.
引用
收藏
页码:6360 / 6373
页数:14
相关论文
共 50 条
  • [31] Domain Generalization in Biosignal Classification
    Dissanayake, Theekshana
    Fernando, Tharindu
    Denman, Simon
    Ghaemmaghami, Houman
    Sridharan, Sridha
    Fookes, Clinton
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (06) : 1978 - 1989
  • [32] Domain generalization by distribution estimation
    Chen, Sentao
    Hong, Zijie
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3457 - 3470
  • [33] Domain generalization in nematode classification
    Zhu, Yi
    Zhuang, Jiayan
    Ye, Sichao
    Xu, Ningyuan
    Xiao, Jiangjian
    Gu, Jianfeng
    Fang, Yiwu
    Peng, Chengbin
    Zhu, Ying
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 207
  • [34] Decomposed adversarial domain generalization
    Chen, Sentao
    KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [35] Attention Diversification for Domain Generalization
    Meng, Rang
    Li, Xianfeng
    Chen, Weijie
    Yang, Shicai
    Song, Jie
    Wang, Xinchao
    Zhang, Lei
    Song, Mingli
    Xie, Di
    Pu, Shiliang
    COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 322 - 340
  • [36] Domain generalization by distribution estimation
    Sentao Chen
    Zijie Hong
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3457 - 3470
  • [37] Domain Generalization with Small Data
    Chen, Kecheng
    Gal, Elena
    Yan, Hong
    Li, Haoliang
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (08) : 3172 - 3190
  • [38] Domain Generalization with Interpolation Robustness
    Palakkadavath, Ragja
    Thanh Nguyen-Tang
    Le, Hung
    Venkatesh, Svetha
    Gupta, Sunil
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [39] Domain Generalization by Functional Regression
    Holzleitner, Markus
    Pereverzyev, Sergei V.
    Zellinger, Werner
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2024, 45 (03) : 259 - 281
  • [40] Stain transfer using Generative Adversarial Networks and disentangled features
    Moghadam, Atefeh Ziaei
    Azarnoush, Hamed
    Seyyedsalehi, Seyyed Ali
    Havaei, Mohammad
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 142