Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications

被引:135
|
作者
Feng, Wenjun [1 ]
Wang, Zhengke [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 3110058, Peoples R China
基金
中国国家自然科学基金;
关键词
biomedical applications; high-swelling hydrogels; hydrogels; non-swelling hydrogels; shrinkable hydrogels; DOUBLE-NETWORK HYDROGELS; POLY(ETHYLENE GLYCOL) HYDROGELS; TRIBLOCK COPOLYMER MICELLES; HIGH MECHANICAL STRENGTH; CHEMICAL CROSS-LINKING; INJECTABLE HYDROGELS; CONTROLLED-RELEASE; HYALURONIC-ACID; IN-VITRO; THERMORESPONSIVE HYDROGELS;
D O I
10.1002/advs.202303326
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
引用
收藏
页数:41
相关论文
共 50 条
  • [21] Nanocomposite Hydrogels for Biomedical Applications
    Gaharwar, Akhilesh K.
    Peppas, Nicholas A.
    Khademhosseini, Ali
    BIOTECHNOLOGY AND BIOENGINEERING, 2014, 111 (03) : 441 - 453
  • [22] Multifunctional Hydrogels for Biomedical Applications
    Souhaly, Jantje Wiliem
    Ardiansyah, Budi Khoiri
    Pires, Ricardo A.
    Pashkuleva, Iva
    Reis, Rui L.
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2024, 35 (12)
  • [23] SYNTHETIC HYDROGELS FOR BIOMEDICAL APPLICATIONS
    RATNER, BD
    HOFFMAN, AS
    ACS SYMPOSIUM SERIES, 1976, (31): : 1 - 36
  • [24] Intelligent hydrogels and their biomedical applications
    Chakrapani, Gayathri
    Zare, Mina
    Ramakrishna, Seeram
    MATERIALS ADVANCES, 2022, 3 (21): : 7757 - 7772
  • [25] Commercial hydrogels for biomedical applications
    Aswathy, S. H.
    Narendrakumar, U.
    Manjubala, I.
    HELIYON, 2020, 6 (04)
  • [26] Thermoresponsive hydrogels in biomedical applications
    Klouda, Leda
    Mikos, Antonios G.
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2008, 68 (01) : 34 - 45
  • [27] Electroconductive hydrogels for biomedical applications
    Lu, Han
    Zhang, Ning
    Ma, Mingming
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2019, 11 (06)
  • [28] Protein hydrogels for biomedical applications
    Wang, Xinyi
    Hou, Yue
    Lu, Xiong
    Xie, Chaoming
    Jiang, Yanan
    BIOSURFACE AND BIOTRIBOLOGY, 2024, 10 (03) : 106 - 131
  • [29] Poloxamer Hydrogels for Biomedical Applications
    Russo, Eleonora
    Villa, Carla
    PHARMACEUTICS, 2019, 11 (12)
  • [30] Hydrogels for pharmaceutical and biomedical applications
    Kashyap, N
    Kumar, N
    Kumar, MNVR
    CRITICAL REVIEWS IN THERAPEUTIC DRUG CARRIER SYSTEMS, 2005, 22 (02): : 107 - 149