Human umbilical cord mesenchymal stem cell-derived exosomes combined with gelatin methacryloyl hydrogel to promote fractional laser injury wound healing

被引:11
|
作者
Zhang, Xinling [1 ]
Ding, Pengbing [1 ]
Chen, Yujie [1 ]
Lin, Zhiyu [1 ]
Zhao, Xun [1 ]
Xie, Hongbin [1 ,2 ]
机构
[1] Peking Univ Third Hosp, Dept Plast Surg, Beijing, Peoples R China
[2] 49 North Garden Rd, Beijing 100191, Peoples R China
关键词
exosomes; fractional laser injury wound; gelatin methacryloyl hydrogel; mesenchymal stem cells; umbilical cord; STROMAL CELLS; ANGIOGENESIS; SCARS;
D O I
10.1111/iwj.14295
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
To investigate whether human umbilical cord mesenchymal stem cell-derived exosomes combined with gelatin methacryloyl (GelMA) hydrogel are beneficial in promoting healing of laser-injured skin wounds in mice. Supernatants of cultured human umbilical cord mesenchymal stem cells (HUC-MSCs) were collected to obtain human umbilical cord MSC-derived exosomes (HUC-MSCs-Exos), which were combined with GelMA hydrogel complex to treat a mouse fractional laser injury model. The study was divided into PBS group, EX (HUC-MSCs-Exos) group, GEL (GelMA hydrogel) group and EX+GEL (HUC-MSCs-Exos combined with GelMA hydrogel) group. The healing of laser-injured skin in each group was observed by gross view and dermatoscopy, and changes in skin structure, angiogenesis and proliferation-related indexes were observed during the healing process of laser-injured skin in each group. The results of the animal experiments showed that the EX and GEL groups alone and the EL+EX group exhibited less inflammatory response compared to the PBS group. The EX and GEL groups showed marked tissue proliferation and favourable angiogenesis, which promoted the wound healing well. The GEL+EX group had the most significant promotion of wound healing compared to the PBS group. qPCR results showed that the expression levels of proliferation-related factors, including KI67 and VEGF and angiogenesis-related factor CD31, were significantly higher in the GEL+EX group than in the other groups, with a time-dependent effect. The combination of HUC-MSCs-Exos and GelMA hydrogel is beneficial in reducing the early inflammatory response of laser-injured skin in mice and promoting its proliferation and angiogenesis, which in turn promotes wound healing.
引用
收藏
页码:4040 / 4049
页数:10
相关论文
共 50 条
  • [1] Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration
    Yang, Jiayi
    Chen, Zhiyi
    Pan, Daoyan
    Li, Huaizhi
    Shen, Jie
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2020, 15 : 5911 - 5926
  • [2] Human Umbilical Cord Mesenchymal Stem Cell Derived Exosomes Delivered Using Silk Fibroin and Sericin Composite Hydrogel Promote Wound Healing
    Han, Chaoshan
    Liu, Feng
    Zhang, Yu
    Chen, Wenjie
    Luo, Wei
    Ding, Fengzhi
    Lu, Lin
    Wu, Chengjie
    Li, Yangxin
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [3] Mesenchymal Stem Cell-Derived Exosomes: Hope for Spinal Cord Injury Repair
    Ren, Zhihua
    Qi, Yao
    Sun, Siyuan
    Tao, Yuanyuan
    Shi, Riyi
    STEM CELLS AND DEVELOPMENT, 2020, 29 (23) : 1467 - 1478
  • [4] Effects of human umbilical cord mesenchymal stem cell-derived exosomes in the rat osteoarthritis models
    Yang, Huanfeng
    Zhou, Yiqin
    Ying, Bi
    Dong, Xuhui
    Qian, Qirong
    Gao, Shaorong
    STEM CELLS TRANSLATIONAL MEDICINE, 2024, 13 (08) : 803 - 811
  • [5] Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model
    Furuta, Taisuke
    Miyaki, Shigeru
    Ishitobi, Hiroyuki
    Ogura, Toshihiko
    Kato, Yoshio
    Kamei, Naosuke
    Miyado, Kenji
    Higashi, Yukihito
    Ochi, Mitsuo
    STEM CELLS TRANSLATIONAL MEDICINE, 2016, 5 (12) : 1620 - 1630
  • [6] Human mesenchymal stem cell-derived exosomes accelerate wound healing of mice eczema
    Wang, Miao
    Zhao, Yang
    Zhang, Qingyi
    JOURNAL OF DERMATOLOGICAL TREATMENT, 2022, 33 (03) : 1401 - 1405
  • [7] Mesenchymal stem cell-derived exosomes: The dawn of diabetic wound healing
    Wu, Jing
    Chen, Li-Hong
    Sun, Shi-Yi
    Li, Yan
    Ran, Xing-Wu
    WORLD JOURNAL OF DIABETES, 2022, 13 (12) : 1066 - 1095
  • [8] The potential therapeutic effect of human umbilical cord mesenchymal stem cell-derived exosomes in bronchopulmonary dysplasia
    Cheng, Tianyu
    Mao, Min
    Liu, Yang
    Xie, Liang
    Shi, Fang
    Liu, Hanmin
    Li, Xin
    LIFE SCIENCES, 2024, 357
  • [9] Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Spinal Cord Injury
    An, Jing
    Chen, Bo
    Zhang, Rui
    Tian, Ding
    Shi, Kuohao
    Zhang, Lingling
    Zhang, Gaorong
    Wang, Jingchao
    Yang, Hao
    MOLECULAR NEUROBIOLOGY, 2025, 62 (01) : 1291 - 1315
  • [10] Human umbilical cord mesenchymal stem cell-derived exosomes promote murine skin wound healing by neutrophil and macrophage modulations revealed by single-cell RNA sequencing
    Liu, Yuanyuan
    Zhang, Mingwang
    Liao, Yong
    Chen, Hongbo
    Su, Dandan
    Tao, Yuandong
    Li, Jiangbo
    Luo, Kai
    Wu, Lihua
    Zhang, Xingyue
    Yang, Rongya
    FRONTIERS IN IMMUNOLOGY, 2023, 14