The role of artificial intelligence in hypertensive disorders of pregnancy: towards personalized healthcare

被引:9
作者
Alkhodari, Mohanad [1 ,2 ]
Xiong, Zhaohan [1 ]
Khandoker, Ahsan H. [2 ]
Hadjileontiadis, Leontios J. [2 ,3 ]
Leeson, Paul [1 ]
Lapidaire, Winok [1 ]
机构
[1] Univ Oxford, Radcliffe Dept Med, Cardiovasc Clin Res Facil, Oxford, England
[2] Khalifa Univ Sci & Tehcnol, Healthcare Engn Innovat Ctr HEIC, Dept Biomed Engn, Abu Dhabi, U Arab Emirates
[3] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki, Greece
关键词
Hypertension disorders of pregnancy; preeclampsia; personalized medicine; artificial intelligence; machine learning; deep learning; CARDIOVASCULAR RISK STRATIFICATION; FUTURE; PREECLAMPSIA; CLASSIFICATION; PREDICTION; OUTCOMES; WOMEN;
D O I
10.1080/14779072.2023.2223978
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IntroductionGuidelines advise ongoing follow-up of patients after hypertensive disorders of pregnancy (HDP) to assess cardiovascular risk and manage future patient-specific pregnancy conditions. However, there are limited tools available to monitor patients, with those available tending to be simple risk assessments that lack personalization. A promising approach could be the emerging artificial intelligence (AI)-based techniques, developed from big patient datasets to provide personalized recommendations for preventive advice.Areas coveredIn this narrative review, we discuss the impact of integrating AI and big data analysis for personalized cardiovascular care, focusing on the management of HDP.Expert opinionThe pathophysiological response of women to pregnancy varies, and deeper insight into each response can be gained through a deeper analysis of the medical history of pregnant women based on clinical records and imaging data. Further research is required to be able to implement AI for clinical cases using multi-modality and multi-organ assessment, and this could expand both knowledge on pregnancy-related disorders and personalized treatment planning.
引用
收藏
页码:531 / 543
页数:13
相关论文
共 124 条
[21]   Cardiovascular Disease Risk Assessment: Insights from Framingham [J].
D'Agostino, Ralph B. ;
Pencina, Michael J. ;
Massaro, Joseph M. ;
Coady, Sean .
GLOBAL HEART, 2013, 8 (01) :11-23
[22]   Artificial intelligence and the cardiologist: what you need to know for 2020 [J].
de Marvao, Antonio ;
Dawes, Timothy J. W. ;
Howard, James Philip ;
O'Regan, Declan P. .
HEART, 2020, 106 (05) :399-400
[23]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930
[24]   Machine Meets Biology: a Primer on Artificial Intelligence in Cardiology and Cardiac Imaging [J].
Dilsizian, Matthew E. ;
Siegel, Eliot L. .
CURRENT CARDIOLOGY REPORTS, 2018, 20 (12)
[25]   Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy [J].
Ghaemi, Mohammad Sajjad ;
DiGiulio, Daniel B. ;
Contrepois, Kevin ;
Callahan, Benjamin ;
Ngo, Thuy T. M. ;
Lee-McMullen, Brittany ;
Lehallier, Benoit ;
Robaczewska, Anna ;
Mcilwain, David ;
Rosenberg-Hasson, Yael ;
Wong, Ronald J. ;
Quaintance, Cecele ;
Culos, Anthony ;
Stanley, Natalie ;
Tanada, Athena ;
Tsai, Amy ;
Gaudilliere, Dyani ;
Ganio, Edward ;
Han, Xiaoyuan ;
Ando, Kazuo ;
McNeil, Leslie ;
Tingle, Martha ;
Wise, Paul ;
Maric, Ivana ;
Sirota, Marina ;
Wyss-Coray, Tony ;
Winn, Virginia D. ;
Druzin, Maurice L. ;
Gibbs, Ronald ;
Darmstadt, Gary L. ;
Lewis, David B. ;
Nia, Vahid Partovi ;
Agard, Bruno ;
Tibshirani, Robert ;
Nolan, Garry ;
Snyder, Michael P. ;
Relman, David A. ;
Quake, Stephen R. ;
Shaw, Gary M. ;
Stevenson, David K. ;
Angst, Martin S. ;
Gaudilliere, Brice ;
Aghaeepour, Nima .
BIOINFORMATICS, 2019, 35 (01) :95-103
[26]   Deep learning interpretation of echocardiograms [J].
Ghorbani, Amirata ;
Ouyang, David ;
Abid, Abubakar ;
He, Bryan ;
Chen, Jonathan H. ;
Harrington, Robert A. ;
Liang, David H. ;
Ashley, Euan A. ;
Zou, James Y. .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[27]   2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines [J].
Goff, David C., Jr. ;
Lloyd-Jones, Donald M. ;
Bennett, Glen ;
Coady, Sean ;
D'Agostino, Ralph B. ;
Gibbons, Raymond ;
Greenland, Philip ;
Lackland, Daniel T. ;
Levy, Daniel ;
O'Donnell, Christopher J. ;
Robinson, Jennifer G. ;
Schwartz, J. Sanford ;
Shero, Susan T. ;
Smith, Sidney C., Jr. ;
Sorlie, Paul ;
Stone, Neil J. ;
Wilson, Peter W. F. .
CIRCULATION, 2014, 129 (25) :S49-S73
[28]   Ultrasound placental image texture analysis using artificial intelligence to predict hypertension in pregnancy [J].
Gupta, Krishan ;
Balyan, Kirti ;
Lamba, Bhumika ;
Puri, Manju ;
Sengupta, Debarka ;
Kumar, Manisha .
JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2022, 35 (25) :5587-5594
[29]   Artificial intelligence in medicine [J].
Hamet, Pavel ;
Tremblay, Johanne .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2017, 69 :S36-S40
[30]   Artificial intelligence in personalized cardiovascular medicine and cardiovascular imaging [J].
Haq, Ikram-Ul ;
Haq, Iqraa ;
Xu, Bo .
CARDIOVASCULAR DIAGNOSIS AND THERAPY, 2021, 11 (03) :911-923