Performance portable ice-sheet modeling with MALI

被引:4
作者
Watkins, Jerry [1 ,6 ]
Carlson, Max [1 ]
Shan, Kyle [2 ]
Tezaur, Irina [1 ]
Perego, Mauro [3 ]
Bertagna, Luca [3 ]
Kao, Carolyn [4 ]
Hoffman, Matthew J. [5 ]
Price, Stephen F. [5 ]
机构
[1] Sandia Natl Labs, Livermore, CA USA
[2] Micron Technol, Boise, ID USA
[3] Sandia Natl Labs, Albuquerque, NM USA
[4] TSMC, Hsinchu, Taiwan
[5] Los Alamos Natl Lab, Los Alamos, NM USA
[6] Sandia Natl Labs, Quantitat Modeling & Anal Dept, POB 969,MS 9060, Livermore, CA 94551 USA
关键词
Albany; changepoint detection; GPU; high-performance computing; ice-sheet modeling; Kokkos; performance; portability; performance testing; Trilinos; EMBEDDED ANALYSIS CAPABILITIES; MANAGING SOFTWARE COMPLEXITY; MULTIPHYSICS SIMULATION; PORTABILITY; SOLVER; ALBANY/FELIX; GREENLAND; GLACIERS; VELOCITY; PARALLEL;
D O I
10.1177/10943420231183688
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
High-resolution simulations of polar ice sheets play a crucial role in the ongoing effort to develop more accurate and reliable Earth system models for probabilistic sea-level projections. These simulations often require a massive amount of memory and computation from large supercomputing clusters to provide sufficient accuracy and resolution; therefore, it has become essential to ensure performance on these platforms. Many of today's supercomputers contain a diverse set of computing architectures and require specific programming interfaces in order to obtain optimal efficiency. In an effort to avoid architecture-specific programming and maintain productivity across platforms, the ice-sheet modeling code known as MPAS-Albany Land Ice (MALI) uses high-level abstractions to integrate Trilinos libraries and the Kokkos programming model for performance portable code across a variety of different architectures. In this article, we analyze the performance portable features of MALI via a performance analysis on current CPU-based and GPU-based supercomputers. The analysis highlights not only the performance portable improvements made in finite element assembly and multigrid preconditioning within MALI with speedups between 1.26 and 1.82x across CPU and GPU architectures but also identifies the need to further improve performance in software coupling and preconditioning on GPUs. We perform a weak scalability study and show that simulations on GPU-based machines perform 1.24-1.92x faster when utilizing the GPUs. The best performance is found in finite element assembly, which achieved a speedup of up to 8.65x and a weak scaling efficiency of 82.6% with GPUs. We additionally describe an automated performance testing framework developed for this code base using a changepoint detection method. The framework is used to make actionable decisions about performance within MALI. We provide several concrete examples of scenarios in which the framework has identified performance regressions, improvements, and algorithm differences over the course of 2 years of development.
引用
收藏
页码:600 / 625
页数:26
相关论文
共 69 条
[21]  
Fischler Y., 2021, GEOSCIENTIFIC MODEL, P1
[22]  
Forsgren Nicole, 2021, ACM Queue, V19, P20, DOI 10.1145/3454122.3454124
[23]   Capabilities and performance of Elmer/Ice, a new-generation ice sheet model [J].
Gagliardini, O. ;
Zwinger, T. ;
Gillet-Chaulet, F. ;
Durand, G. ;
Favier, L. ;
de Fleurian, B. ;
Greve, R. ;
Malinen, M. ;
Martin, C. ;
Raback, P. ;
Ruokolainen, J. ;
Sacchettini, M. ;
Schafer, M. ;
Seddik, H. ;
Thies, J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2013, 6 (04) :1299-1318
[24]   The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6 [J].
Goelzer, Heiko ;
Nowicki, Sophie ;
Payne, Anthony ;
Larour, Eric ;
Seroussi, Helene ;
Lipscomb, William H. ;
Gregory, Jonathan ;
Abe-Ouchi, Ayako ;
Shepherd, Andrew ;
Simon, Erika ;
Agosta, Cecile ;
Alexander, Patrick ;
Aschwanden, Andy ;
Barthel, Alice ;
Calov, Reinhard ;
Chambers, Christopher ;
Choi, Youngmin ;
Cuzzone, Joshua ;
Dumas, Christophe ;
Edwards, Tamsin ;
Felikson, Denis ;
Fettweis, Xavier ;
Golledge, Nicholas R. ;
Greve, Ralf ;
Humbert, Angelika ;
Huybrechts, Philippe ;
Le Clec'h, Sebastien ;
Lee, Victoria ;
Leguy, Gunter ;
Little, Chris ;
Lowry, Daniel P. ;
Morlighem, Mathieu ;
Nias, Isabel ;
Quiquet, Aurelien ;
Rueckamp, Martin ;
Schlegel, Nicole-Jeanne ;
Slater, Donald A. ;
Smith, Robin S. ;
Straneo, Fiamma ;
Tarasov, Lev ;
van de Wal, Roderik ;
van den Broeke, Michiel .
CRYOSPHERE, 2020, 14 (09) :3071-3096
[25]   The changepoint model for statistical process control [J].
Hawkins, DM ;
Qiu, PH ;
Kang, CW .
JOURNAL OF QUALITY TECHNOLOGY, 2003, 35 (04) :355-366
[26]   FROSch PRECONDITIONERS FOR LAND ICE SIMULATIONS OF GREENLAND AND ANTARCTICA [J].
Heinlein, Alexander ;
Perego, Mauro ;
Rajamanickam, Sivasankaran .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02) :B339-B367
[27]   An overview of the Trilinos Project [J].
Heroux, MA ;
Bartlett, RA ;
Howle, VE ;
Hoekstra, RJ ;
Hu, JJ ;
Kolda, TG ;
Lehoucq, RB ;
Long, KR ;
Pawlowski, RP ;
Phipps, ET ;
Salinger, AG ;
Thornquist, HK ;
Tuminaro, RS ;
Willenbring, JM ;
Williams, A ;
Stanley, KS .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2005, 31 (03) :397-423
[28]   Scientific Benchmarking of Parallel Computing Systems Twelve ways to tell the masses when reporting performance results [J].
Hoefler, Torsten ;
Belli, Roberto .
PROCEEDINGS OF SC15: THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2015,
[29]   MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids [J].
Hoffman, Matthew J. ;
Perego, Mauro ;
Price, Stephen F. ;
Lipscomb, William H. ;
Zhang, Tong ;
Jacobsen, Douglas ;
Tezaur, Irina ;
Salinger, Andrew G. ;
Tuminaro, Raymond ;
Bertagna, Luca .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (09) :3747-3780
[30]   SOLUTION OF NONLINEAR STOKES EQUATIONS DISCRETIZED BY HIGH-ORDER FINITE ELEMENTS ON NONCONFORMING AND ANISOTROPIC MESHES, WITH APPLICATION TO ICE SHEET DYNAMICS [J].
Isaac, Tobin ;
Stadler, Georg ;
Ghattas, Omar .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) :B804-B833