Moment ratio inequality of bivariate Gaussian distribution and three-dimensional Gaussian product inequality

被引:6
作者
Russell, Oliver [1 ]
Sun, Wei [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Gaussian product inequality; conjecture; Hypergeometric function; Combinatorial inequality; Sums-of-squares; Computational mathematics; PROOF; VARIABLES;
D O I
10.1016/j.jmaa.2023.127410
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the three-dimensional Gaussian product inequality (GPI) E[X12X22m2X2m3 3] >= E[X12]E[X22m2]E[X2m3 3] for any centered Gaussian random vector (X1, X2, X3) and m2, m3 is an element of N. We discover a novel inequality for the moment ratio |E[X 2m2+1X2m3+1 2 3]| E[X22m2X2m3 3] , which implies the 3D-GPI. The interplay between computing and hard analysis plays a crucial role in the proofs. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 28 条
  • [1] Gaussian variables, polynomials and permanents
    Arias-de-Reyna, J
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 107 - 114
  • [2] Barthe F, 2022, Arxiv, DOI arXiv:2207.03847
  • [3] Bateman H., 1953, HIGHER TRANSCENDENTA
  • [4] Lower bounds for norms of products of polynomials
    Benítez, C
    Sarantopoulos, Y
    Tonge, A
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 395 - 408
  • [5] Cifuentes D., 2020, J SOFTW ALGEBRA GEOM, V10, P17
  • [6] Edelmann D., 2022, ARXIV
  • [7] Frenkel PE, 2008, MATH RES LETT, V15, P351
  • [8] Genest C, 2023, Arxiv, DOI arXiv:2206.01976
  • [9] A combinatorial proof of the Gaussian product inequality beyond the MTP2 case
    Genest, Christian
    Ouimet, Frederic
    [J]. DEPENDENCE MODELING, 2022, 10 (01): : 236 - 244
  • [10] A proof of the Kepler conjecture
    Hales, TC
    [J]. ANNALS OF MATHEMATICS, 2005, 162 (03) : 1065 - 1185