Digital pathology whole slide image compression with Vector Quantized Variational Autoencoders

被引:1
|
作者
Keighley, Jason [1 ,6 ]
de Kamps, Marc [1 ,6 ,7 ]
Wright, Alexander [1 ,2 ]
Treanor, Darren [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Leeds, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, England
[2] Leeds Teaching Hosp NHS Trust, Great George St, Leeds LS1 3EX, W Yorkshire, England
[3] Linkoping Univ, Dept Clin Pathol, Linkoping, Sweden
[4] Linkoping Univ, Dept Clin & Expt Med, Linkoping, Sweden
[5] Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
[6] Univ Leeds, LIDA, Leeds, W Yorkshire, England
[7] Alan Turing Inst, 96 Euston Rd, London NW1 2DB, England
来源
MEDICAL IMAGING 2023 | 2023年 / 12471卷
基金
英国工程与自然科学研究理事会;
关键词
Variational Autoencoder; Quantisation; Compression; Pathology; Whole Slide Images; Digital;
D O I
10.1117/12.2647844
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Digital pathology Whole Slide Images (WSIs) are large images (similar to 30 GB/slide uncompressed) of high resolution (0.25 microns per pixel), presenting a significant data storage challenge for hospitals wishing to adopt digital pathology. Lossy compression has been adopted by scanner manufacturers to address this issue - we compare lossy Joint Photographic Experts Group (JPEG) compression for WSIs and investigate the Vector Quantised Variational Autoencoder 2 variant (VQVAE2) as a possible alternative to reduce file size while encoding useful features in the compressed representation. We trained three VQVAE2 models on a Camelyon 2016 subset to the Compression Ratio (CR) of 19.2:1 (CR1), 9.6:1 (CR2) and 4.8:1 (CR3) and tested on a Camelyon 2016 (DS1) subset; University of California (DS2) and Internal Validation Set (DS3). We then compared compression performance to ImageMagick JPEG and JPEG 2000 implementations. Both JPEG and JPEG 2000 compression outperformed the VQVAE2 implementation within the Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) metrics. The trained VQVAE2 models could visually reproduce WSI tissue structure, but used colours from the original training data within the reconstructions on other datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Diffusion bridges vector quantized variational autoencoders
    Cohen, Max
    Quispe, Guillaume
    Le Corff, Sylvain
    Ollion, Charles
    Moulines, Eric
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [2] Whole Slide Image Quality in Digital Pathology: Review and Perspectives
    Brixtel, Romain
    Bougleux, Sebastien
    Lezoray, Olivier
    Caillot, Yann
    Lemoine, Benoit
    Fontaine, Mathieu
    Nebati, Dalal
    Renouf, Arnaud
    IEEE ACCESS, 2022, 10 : 131005 - 131035
  • [3] Whole Slide Image Quality in Digital Pathology: Review and Perspectives
    Brixtel, Romain
    Bougleux, Sebastien
    Lezoray, Olivier
    Caillot, Yann
    Lemoine, Benoit
    Fontaine, Mathieu
    Nebati, Dalal
    Renouf, Arnaud
    IEEE Access, 2022, 10 : 131005 - 131035
  • [4] Multi-Stained Whole Slide Image Alignment in Digital Pathology
    Deniz, Oscar
    Toomey, David
    Conway, Catherine
    Bueno, Gloria
    MEDICAL IMAGING 2015: DIGITAL PATHOLOGY, 2015, 9420
  • [5] Privacy risks of whole-slide image sharing in digital pathology
    Petr Holub
    Heimo Müller
    Tomáš Bíl
    Luca Pireddu
    Markus Plass
    Fabian Prasser
    Irene Schlünder
    Kurt Zatloukal
    Rudolf Nenutil
    Tomáš Brázdil
    Nature Communications, 14
  • [6] Privacy risks of whole-slide image sharing in digital pathology
    Holub, Petr
    Mueller, Heimo
    Bil, Tomas
    Pireddu, Luca
    Plass, Markus
    Prasser, Fabian
    Schluender, Irene
    Zatloukal, Kurt
    Nenutil, Rudolf
    Brazdil, Tomas
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [7] MODELING WOUND HEALING USING VECTOR QUANTIZED VARIATIONAL AUTOENCODERS AND TRANSFORMERS
    Backova, Lenka
    Bengoetxea, Guillermo
    Rogalla, Svana
    Franco-Barranco, Daniel
    Solon, Jerome
    Arganda-Carreras, Ignacio
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [8] Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis
    Sami Blom
    Lassi Paavolainen
    Dmitrii Bychkov
    Riku Turkki
    Petra Mäki-Teeri
    Annabrita Hemmes
    Katja Välimäki
    Johan Lundin
    Olli Kallioniemi
    Teijo Pellinen
    Scientific Reports, 7
  • [9] Image Quality Assessment in Digital Pathology - The Analysis of Background in Whole Slide Images
    Schrader, Thomas
    Nadolny, Anne
    Piduch, Robert
    Hufnagl, Peter
    PROCEEDINGS IWBBIO 2014: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1 AND 2, 2014, : 147 - 147
  • [10] Optimal whole slide image formats for artificial intelligence training in digital pathology
    Yook, M.
    Jung, C. K.
    Yoon, S. K.
    Choi, I. Y.
    VIRCHOWS ARCHIV, 2024, 485 : S400 - S400