Adaptive Class Center Generalization Network: A Sparse Domain-Regressive Framework for Bearing Fault Diagnosis Under Unknown Working Conditions

被引:27
作者
Wang, Bin [1 ]
Wen, Long [1 ]
Li, Xinyu [2 ]
Gao, Liang [2 ]
机构
[1] China Univ Geosci, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
关键词
Fault diagnosis; Feature extraction; Adaptation models; Training; Adaptive systems; Mathematical models; Employee welfare; Adaptive central loss; discriminative feature; domain generalization; fault diagnosis; sparse representation; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1109/TIM.2023.3273659
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fault diagnosis is essential to ensure the bearing safety in smart manufacturing. As the rotating bearings usually work under variable working conditions, there may exist differences between the data distributions of the training and test domains. Domain adaptation fault diagnosis (DAFD) has been adopted to handle this domain shift phenomenon. But DAFD relies heavily on the target domain during its training process, while the target domain is always unavailable in real-world scenarios. To handle this situation, this article proposed a new adaptive class center generalization network (ACCGN). ACCGN is used to learn invariant feature representations of orientation signals from multiple source domains. First, ACCGN is used to learn the discriminative invariant fault feature from multisource domains, and it combines the sparse domain regression framework and central loss to optimize the data features from interclass and intraclass simultaneously. Second, a new adaptive method is proposed to update the center in central loss, and it can diminish the effect on the initialization center location. Third, a sparse domain regression framework is used to learn the interclass invariant features. The proposed ACCGN has been tested on two famous bearing datasets, and the results have shown the effectiveness of the proposed ACCGN on the CWRU and JNU datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] An Adaptive Anti-Noise Neural Network for Bearing Fault Diagnosis Under Noise and Varying Load Conditions
    Jin, Guoqiang
    Zhu, Tianyi
    Akram, Muhammad Waqar
    Jin, Yi
    Zhu, Changan
    IEEE ACCESS, 2020, 8 : 74793 - 74807
  • [22] A two-stage learning framework for imbalanced semi-supervised domain generalization fault diagnosis under unknown operating conditions
    Jian, Chuanxia
    Chen, Heen
    Ao, Yinhui
    Zhang, Xiaobo
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [23] A Novel Fault Diagnosis Method Under Dynamic Working Conditions Based on a CNN With an Adaptive Learning Rate
    Zhai, Xiaodong
    Qiao, Fei
    Ma, Yumin
    Lu, Hong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [24] Intelligent Bearing Fault Diagnosis Based on Adaptive Deep Belief Network under Variable Working Conditions
    Ma H.
    Zhou D.
    Wei Y.
    Wu W.
    Pan E.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2022, 56 (10): : 1368 - 1378
  • [25] Mutual-assistance semisupervised domain generalization network for intelligent fault diagnosis under unseen working conditions
    Zhao, Chao
    Shen, Weiming
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 189
  • [26] Intra-domain self generalization network for intelligent fault diagnosis of bearings under unseen working conditions
    Huang, Kai
    Ren, Zhijun
    Zhu, Linbo
    Lin, Tantao
    Zhu, Yongsheng
    Zeng, Li
    Wan, Jin
    ADVANCED ENGINEERING INFORMATICS, 2025, 64
  • [27] A Discriminative Feature-Based Fault Diagnosis Network for Planetary Gearboxes Under Variable Working Conditions
    Li, Haifeng
    Zhang, Ke
    Pu, Huaxiang
    Wei, Shijie
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [28] A New Deep Transfer Learning Method for Bearing Fault Diagnosis Under Different Working Conditions
    Zhu, Jun
    Chen, Nan
    Shen, Changqing
    IEEE SENSORS JOURNAL, 2020, 20 (15) : 8394 - 8402
  • [29] Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method
    An, Zenghui
    Li, Shunming
    Wang, Jinrui
    Xin, Yu
    Xu, Kun
    NEUROCOMPUTING, 2019, 352 : 42 - 53
  • [30] Cross-Conditions Fault Diagnosis of Rolling Bearing Based on Transitional Domain Adversarial Network
    Jiang, Yonghua
    He, Yian
    Shi, Zhuoqi
    Jiang, Hongkui
    Dong, Zhilin
    Sun, Jianfeng
    Tang, Chao
    Jiao, Weidong
    IEEE SENSORS JOURNAL, 2025, 25 (01) : 1978 - 1993