Multi-Strategy Improved Flamingo Search Algorithm for Global Optimization

被引:5
|
作者
Jiang, Shuhao [1 ,2 ]
Shang, Jiahui [1 ]
Guo, Jichang [2 ]
Zhang, Yong [1 ]
机构
[1] Tianjin Univ Commerce, Sch Informat Engn, Tianjin 300134, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 09期
关键词
Flamingo Search Algorithm; global optimization; information feedback model;
D O I
10.3390/app13095612
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To overcome the limitations of the Flamingo Search Algorithm (FSA), such as a tendency to converge on local optima and improve solution accuracy, we present an improved algorithm known as the Multi-Strategy Improved Flamingo Search Algorithm (IFSA). The IFSA utilizes a cube chaotic mapping strategy to generate initial populations, which enhances the quality of the initial solution set. Moreover, the information feedback model strategy is improved to dynamically adjust the model based on the current fitness value, which enhances the information exchange between populations and the search capability of the algorithm itself. In addition, we introduce the Random Opposition Learning and Elite Position Greedy Selection strategies to constantly retain superior individuals while also reducing the probability of the algorithm falling into a local optimum, thereby further enhancing the convergence of the algorithm. We evaluate the performance of the IFSA using 23 benchmark functions and verify its optimization using the Wilcoxon rank-sum test. The compared experiment results indicate that the proposed IFSA can obtain higher convergence accuracy and better exploration abilities. It also provides a new optimization algorithm for solving complex optimization problems.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Improved Chimp optimization algorithm with multi-strategy integration
    Li, Ya-mei
    Jin, Tian-cheng
    Liu, Shang-lin
    Liu, Su
    2022 9TH INTERNATIONAL FORUM ON ELECTRICAL ENGINEERING AND AUTOMATION, IFEEA, 2022, : 1192 - 1197
  • [22] Hybrid Multi-Strategy Improved Butterfly Optimization Algorithm
    Cao, Panpan
    Huang, Qingjiu
    APPLIED SCIENCES-BASEL, 2024, 14 (24):
  • [23] A multi-strategy improved slime mould algorithm for global optimization and engineering design problems
    Deng, Lingyun
    Liu, Sanyang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [24] A Multi-strategy Improved Sparrow Search Algorithm and its Application
    Yongkuan Yang
    Jianlong Xu
    Xiangsong Kong
    Jun Su
    Neural Processing Letters, 2023, 55 : 12309 - 12346
  • [25] A Multi-strategy Improved Sparrow Search Algorithm and its Application
    Yang, Yongkuan
    Xu, Jianlong
    Kong, Xiangsong
    Su, Jun
    NEURAL PROCESSING LETTERS, 2023, 55 (09) : 12309 - 12346
  • [26] Multi-strategy adaptive cuckoo search algorithm for numerical optimization
    Jiatang Cheng
    Yan Xiong
    Artificial Intelligence Review, 2023, 56 : 2031 - 2055
  • [27] Multi-strategy adaptive cuckoo search algorithm for numerical optimization
    Cheng, Jiatang
    Xiong, Yan
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 2031 - 2055
  • [28] An improved multi-strategy beluga whale optimization for global optimization problems
    Chen, Hongmin
    Wang, Zhuo
    Wu, Di
    Jia, Heming
    Wen, Changsheng
    Rao, Honghua
    Abualigah, Laith
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 13267 - 13317
  • [29] Multi-strategy improved GTO algorithm for numerical optimization experiments
    Xie, Cankun
    Wang, Jinming
    Li, Shaobo
    Zhu, Keyu
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1 - 5
  • [30] Multi-Strategy Improved Northern Goshawk Optimization Algorithm and Application
    Zhang, Fan
    IEEE ACCESS, 2024, 12 : 34247 - 34264