Achieving Continuous Self-Powered Energy Conversion-Storage-Supply Integrated System Based on Carbon Felt

被引:8
|
作者
Ji, Peiyuan [1 ]
Li, Qianying [1 ]
Zhang, Xuemei [1 ]
Hu, Yawen [1 ]
Han, Xiangyu [2 ]
Zhang, Dazhi [1 ,3 ]
Hu, Chenguo [1 ]
Xi, Yi [1 ]
机构
[1] Chongqing Univ, Analyt & Testing Ctr, Dept Appl Phys, Chongqing Key Lab Soft Condensed Matter Phys & Sma, Chongqing 400044, Peoples R China
[2] Chongqing Jiaotong Univ, Sch Mat Sci & Engn, Chongqing 400074, Peoples R China
[3] China Automot Engn Res Inst Co Ltd, Dept New Energy Power Evaluat & Res, Chongqing 401122, Peoples R China
基金
中国国家自然科学基金;
关键词
energy harvesting; fast charging device; self-powered system; supercapacitors; triboelectric nanogenerators; TRIBOELECTRIC NANOGENERATOR; SURFACE-AREA; PERFORMANCE; NITROGEN;
D O I
10.1002/advs.202207033
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficient harvesting and storage of dispersed irregular energy from the environment are crucial to the demand for the distributed devices of the Internet of Things (IoTs). Here, a carbon felt (CF)-based energy conversion-storage-supply integrated system (CECIS) that contains a CF-based solid-state supercapacitor (CSSC) and a CF-based triboelectric nanogenerator (C-TENG) is presented, which is capable of simultaneously energy storage and conversion. The simple treated CF not only delivers a maximal specific capacitance of 402.4 F g(-1) but also prominent supercapacitor characteristics with fast charge and slow discharge, enabling 38 LEDs successfully lightened for more than 900 s after a wireless charging time of only 2 s. With the original CF as the sensing layer, buffer layer, and current collector of C-TENG, the maximal power of 91.5 mW is attained. The CECIS shows a competitive output performance. The time ratio of the duration of supply energy to the harvesting and storage reaches 9.6:1, meaning that it is competent for the continuous energy application when the effective working time of C-TENG is longer than one-tenth of the whole day. This study not only highlights the great potential of CECIS in sustainable energy harvesting and storage but also lays the foundation for the ultimate realization of IoTs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Self-powered energy conversion and energy storage system based on triboelectric nanogenerator
    Han, Yu
    Wang, Wenqiang
    Zou, Jingdian
    Li, Zhen
    Cao, Xia
    Xu, Shengming
    NANO ENERGY, 2020, 76
  • [2] Facile Fabrication of Double-Layered Electrodes for a Self-Powered Energy Conversion and Storage System
    Jo, Seungju
    Jayababu, Nagabandi
    Kim, Daewon
    NANOMATERIALS, 2020, 10 (12) : 1 - 12
  • [3] Self-powered and wireless physiological monitoring system with integrated power supply and sensors
    Yan, Wei
    Ma, Chenbin
    Cai, Xinxin
    Sun, Yangyang
    Zhang, Guanglei
    Song, Weixing
    NANO ENERGY, 2023, 108
  • [4] RF Energy Harvester Integrated Self-Powered Wearable Respiratory Monitoring System
    Parvin, Dilruba
    Hassan, Omiya
    Oh, Taeho
    Islam, Syed Kamrul
    2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,
  • [5] A novel energy conversion method based on hydrogel material for self-powered sensor system applications
    Wu, Xuan
    Li, Guangyong
    Lee, Dong-Weon
    APPLIED ENERGY, 2016, 173 : 103 - 110
  • [6] Energy conversion technologies towards self-powered electrochemical energy storage systems: the state of the art and perspectives
    Wei, Huige
    Cui, Dapeng
    Ma, Junhui
    Chu, Liqiang
    Zhao, Xiaoyu
    Song, Haixiang
    Liu, Hu
    Liu, Tao
    Wang, Ning
    Guo, Zhanhu
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (05) : 1873 - 1894
  • [7] Recent advances in flexible high polymer-based self-powered systems for energy conversion
    Wang, Qiuwen
    Zhang, Qian
    Mao, Liwei
    Zheng, Guoxu
    Song, Mingxin
    Liu, Zhiwei
    Wu, DingLan
    Wu, Mengwei
    MATERIALS TODAY CHEMISTRY, 2024, 42
  • [8] Recent advances in wearable self-powered energy systems based on flexible energy storage devices integrated with flexible solar cells
    Zhao, Jiangqi
    Zha, Jiajia
    Zeng, Zhiyuan
    Tan, Chaoliang
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 18887 - 18905
  • [9] Loofah-based self-powered triboelectric nanogenerator-supercapacitor for an integrated self-charging energy system
    Zhang, Qiran
    Jin, Xin
    Li, Haoran
    Wang, Ran
    Gao, Faming
    Jiao, Tifeng
    Cao, Xia
    Ma, Jinming
    NANO ENERGY, 2024, 132
  • [10] Actuation and sensor integrated self-powered cantilever system based on TENG technology
    Chen, Jie
    Guo, Hengyu
    Wu, Zhiyi
    Xu, Guoqiang
    Zi, Yunlong
    Hu, Chenguo
    Wang, Zhong Lin
    NANO ENERGY, 2019, 64