Deciphering the mechanism of Tinospora cordifolia extract on Th17 cells through in-depth transcriptomic profiling and in silico analysis

被引:4
作者
Nandan, Amrita [1 ,2 ,3 ]
Sharma, Vishwas
Banerjee, Prodyot [3 ]
Sadasivam, Kannan [4 ]
Venkatesan, Subramanian [4 ,5 ]
Prasher, Bhavana [1 ,2 ,3 ]
机构
[1] Council Sci & Ind Res Inst Genom & Integrat Biol C, Genom & Mol Med, Delhi, India
[2] CSIR IGIB, CSIRs Ayurgen Unit, Translat Res & Innovat Sci Ayurgen TRISUTRA, Delhi, India
[3] CSIR IGIB, Ctr Excellence Appl Dev Ayurveda Prakriti & Genom, Delhi, India
[4] CSIR Cent Leather Res Inst CLRI, Ctr High Comp, Chennai, India
[5] Indian Inst Technol Madras, Dept Chem, Chennai, India
关键词
immunomodulatory; ayurveda; guduchi; molecular docking; signaling pathway; Th17; cells; Tinospora cordifolia; POLYSACCHARIDE; PROTEIN; PLANT; ARABINOGALACTAN; STEM;
D O I
10.3389/fphar.2022.1056677
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Naive CD4(+) T cells differentiate into effector (Th1, Th2, Th17) cells and immunosuppressive (Treg) cells upon antigenic stimulation in the presence of a specific cytokine milieu. The T cell in vitro culture system provides a very efficient model to study compounds' therapeutic activity and mechanism of action. Tinospora cordifolia (Willd.) Hook.f. & Thomson (Family. Menispermaceae) is one of the widely used drugs in Ayurveda (ancient Indian system of medicine) for various ailments such as inflammatory conditions, autoimmune disorders, and cancer as well as for promoting general health. In vitro and in vivo studies on immune cells comprising dendritic cells, macrophages, and B cells suggest its immune-modulating abilities. However, to date, the effect of T. cordifolia on individual purified and polarized T cell subsets has not been studied. Studying drug effects on T cell subsets is needed to understand their immunomodulatory mechanism and to develop treatments for diseases linked with T cell abnormalities. In this study, we examined the immunomodulatory activity of T. cordifolia on primary CD4(+) T cells, i.e., Th1, Th17, and iTreg cells. An aqueous extract of T. cordifolia was non-cytotoxic at concentrations below 1500 mu g/ml and moderately inhibited the proliferation of naive CD4(+) T cells stimulated with anti-CD3 epsilon and anti-CD28 for 96 h. T. cordifolia treatment of naive CD4(+) T cells differentiated under Th17-polarizing conditions exhibited reduced frequency of IL-17 producing cells with inhibition of differentiation and proliferation. For the first time, in-depth genome-wide expression profiling of T. cordifolia treated naive CD4(+) T cells, polarized to Th17 cells, suggests the broad-spectrum activity of T. cordifolia. It shows inhibition of the cytokine-receptor signaling pathway, majorly via the JAK-STAT signaling pathway, subsequently causing inhibition of Th17 cell differentiation, proliferation, and effector function. Additionally, the molecular docking studies of the 69 metabolites of T. cordifolia further substantiate the inhibitory activity of T. cordifolia via the cytokine-receptor signaling pathway. Furthermore, in vitro polarized Th1 and iTreg cells treated with T. cordifolia extract also showed reduced IFN-gamma production and FoxP3 expression, respectively. This study provides insight into the plausible mechanism/s of anti-inflammatory activity of T. cordifolia involving T cells, mainly effective in Th17-associated autoimmune and inflammatory diseases.
引用
收藏
页数:18
相关论文
共 46 条
[1]  
Aher V, 2012, IRAN J PHARM RES, V11, P863
[2]  
Akash S, 2022, RES J PHARMACOGN PHY, V14, P124, DOI [10.52711/0975-4385.2022.00023, DOI 10.52711/0975-4385.2022.00023]
[3]   Tinospora cordifolia Aqueous Extract Alleviates Cyclophosphamide-Induced Immune Suppression, Toxicity and Systemic Candidiasis in immunosuppressed Mice: In vivo Study in Comparison to Antifungal Drug Fluconazole [J].
Alrumaihi, Faris ;
Allemailem, Khaled S. ;
Almatroudi, Ahmad ;
Alsahli, Mohammed A. ;
Khan, Arif ;
Khan, Masood A. .
CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2019, 20 (12) :1055-1063
[4]   Immunostimulatory properties of the major protein from the stem of the Ayurvedic medicinal herb, guduchi (Tinospora cordifolia) [J].
Aranha, Ivan ;
Clement, Fatima ;
Venkatesh, Yeldur P. .
JOURNAL OF ETHNOPHARMACOLOGY, 2012, 139 (02) :366-372
[5]   Validation of ethnomedicinal potential of Tinospora cordifolia for anticancer and immunomodulatory activities and quantification of bioactive molecules by HPTLC [J].
Bala, Manju ;
Pratap, Kunal ;
Verma, Praveen Kumar ;
Singh, Bikram ;
Padwad, Yogendra .
JOURNAL OF ETHNOPHARMACOLOGY, 2015, 175 :131-137
[6]   Giloy Ghanvati (Tinospora cordifolia (Willd.) Hook. f. and Thomson) Reversed SARS-CoV-2 Viral Spike-Protein Induced Disease Phenotype in the Xenotransplant Model of Humanized Zebrafish [J].
Balkrishna, Acharya ;
Khandrika, Lakshmipathi ;
Varshney, Anurag .
FRONTIERS IN PHARMACOLOGY, 2021, 12
[7]   Tinocordiside from Tinospora cordifolia (Giloy) May Curb SARS-CoV-2 Contagion by Disrupting the Electrostatic Interactions between Host ACE2 and Viral S-Protein Receptor Binding Domain [J].
Balkrishna, Acharya ;
Pokhrel, Subarna ;
Varshney, Anurag .
COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2021, 24 (10) :1795-1802
[8]   An immunologically active arabinogalactan from Tinospora cordifolia [J].
Chintalwar, G ;
Jain, A ;
Sipahimalani, A ;
Banerji, A ;
Sumariwalla, P ;
Ramakrishnan, R ;
Sainis, K .
PHYTOCHEMISTRY, 1999, 52 (06) :1089-1093
[9]  
Claeys E., 2019, Archives of Microbiology Immunology, V3, P133, DOI DOI 10.26502/AMI.93650036
[10]   Role of Th1 and Th17 cells in organ-specific autoimmunity [J].
Dardalhon, Valerie ;
Korn, Thomas ;
Kuchroo, Vijay K. ;
Anderson, Ana C. .
JOURNAL OF AUTOIMMUNITY, 2008, 31 (03) :252-256