Variation Instability Near Vacuum in One-Dimensional Isentropic Flow

被引:0
作者
Jenssen, Helge Kristian [1 ]
机构
[1] Penn State Univ, Dept Math, State Coll, PA 16802 USA
基金
美国国家科学基金会;
关键词
APPROXIMATE SOLUTIONS; HYPERBOLIC SYSTEMS; GAS-DYNAMICS; BV BOUNDS; P-SYSTEM; CONVERGENCE;
D O I
10.1093/imrn/rnac251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider instability of the total variation in shock-only solutions to the one-dimensional isentropic Euler system. The main results concern the possibility of immediate blowup in variation of the density field rho when the data approaches vacuum. In the case of an initially bounded velocity field, it is verified that immediate variation blowup in rho can occur whenever the adiabatic exponent satisfies gamma > 3, whereas no such instability occurs for 1 <gamma <= 3. When the initial velocity field is unbounded, variation blowup in. can occur for any gamma > 1.
引用
收藏
页码:14929 / 14954
页数:26
相关论文
共 15 条
[1]  
Bahvalov N.S., 1970, VY ISL MAT MAT FIZ, V10, P969
[2]   On finite time BV blow-up for the p-system [J].
Bressan, Alberto ;
Chen, Geng ;
Zhang, Qingtian .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (08) :1242-1280
[3]   No BV bounds for approximate solutions to p-system with general pressure law [J].
Bressan, Alberto ;
Chen, Geng ;
Zhang, Qingtian ;
Zhu, Shengguo .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2015, 12 (04) :799-816
[4]   Lack of BV bounds for approximate solutions to the p-system with large data [J].
Bressan, Alberto ;
Chen, Geng ;
Zhang, Qingtian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) :3067-3085
[5]   Vanishing Viscosity Solutions of the Compressible Euler Equations with Spherical Symmetry and Large Initial Data [J].
Chen, Gui-Qiang G. ;
Perepelitsa, Mikhail .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (02) :771-800
[6]  
Dafermos CM., 2005, Hyperbolic Conservation Laws in Continuum Physics, DOI [10.1007/3-540-29089-3, DOI 10.1007/3-540-29089-3]
[7]  
DING XX, 1989, COMMUN MATH PHYS, V121, P63, DOI 10.1007/BF01218624
[8]   CONVERGENCE OF THE VISCOSITY METHOD FOR ISENTROPIC GASDYNAMICS [J].
DIPERNA, RJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 91 (01) :1-30
[10]  
Knopp K., 1956, INFINITE SEQUENCES S