Effective hyperspectral image classification based on segmented PCA and 3D-2D CNN leveraging multibranch feature fusion

被引:5
作者
Afjal, Masud Ibn [1 ,2 ]
Mondal, Md. Nazrul Islam [2 ]
Mamun, Md. Al [2 ]
机构
[1] Hajee Mohammad Danesh Sci & Technol Univ, Comp Sci & Engn, Dinajpur, Bangladesh
[2] Rajshahi Univ Engn & Technol, Comp Sci & Engn, Rajshahi, Bangladesh
关键词
Convolutional neural networks; remote sensing; hyperspectral image classification; deep learning; segmented PCA; multi-branch 3D-2D CNN; feature fusion; GRAPH CONVOLUTIONAL NETWORKS; PRINCIPAL COMPONENT ANALYSIS; THEORETIC FEATURE-SELECTION; INFORMATION;
D O I
10.1080/14498596.2024.2305119
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We present an innovative hyperspectral image (HSI) classification method addressing challenges posed by closely spaced wavelength bands. Our approach combines 3D-2D convolutional neural networks (CNNs) with multi-branch feature fusion for improved spectral-spatial feature extraction. Using segmented principal component analysis (Seg-PCA), we reduce HSIs' spectral dimensions into global and local intrinsic characteristics. The integration of 3D and 2D CNNs captures joint spectral-spatial features, while a multi-branch network extracts and merges diverse local features along the spectral dimension. Our method outperforms existing approaches, achieving remarkable accuracy of 99.27%, 100%, and 99.99% on Indian Pines, Salinas Scene, and University of Pavia datasets, respectively.
引用
收藏
页码:821 / 848
页数:28
相关论文
共 63 条
[51]   Spectrally segmented principal component analysis of hyperspectral imagery for mapping invasive plant species [J].
Tsai, F. ;
Lin, E. -K. ;
Yoshino, K. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (05) :1023-1039
[52]   Improved folded-PCA for efficient remote sensing hyperspectral image classification [J].
Uddin, Md Palash ;
Al Mamun, Md ;
Hossain, Md Ali ;
Ibn Afjal, Masud .
GEOCARTO INTERNATIONAL, 2022, 37 (25) :9474-9496
[53]   Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification [J].
Uddin, Md. Palash ;
Mamun, Md. Al ;
Afjal, Masud Ibn ;
Hossain, Md. Ali .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (01) :286-321
[54]   PCA-based Feature Reduction for Hyperspectral Remote Sensing Image Classification [J].
Uddin, Md. Palash ;
Al Mamun, Md. ;
Hossain, Md. Ali .
IETE TECHNICAL REVIEW, 2021, 38 (04) :377-396
[55]   Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis [J].
Wang, Jing ;
Chang, Chein-I .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06) :1586-1600
[56]   Sensitivity of Support Vector Machines to Random Feature Selection in Classification of Hyperspectral Data [J].
Waske, Bjoern ;
van der Linden, Sebastian ;
Benediktsson, Jon Atli ;
Rabe, Andreas ;
Hostert, Patrick .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (07) :2880-2889
[57]   Spectral Variation Augmented Representation for Hyperspectral Imagery Classification With Few Labeled Samples [J].
Xie, Bobo ;
Zhang, Yifan ;
Mei, Shaohui ;
Zhang, Ge ;
Feng, Yan ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[58]   Resnet-Unet considering Patches (RUP) network to solve the problem of patches due to shadows in extracting building top information [J].
Yang, Dongliang ;
Liu, Zichen ;
Feng, Dejun ;
Xie, Yakun ;
Song, Xudong ;
Feng, Ziqin .
JOURNAL OF SPATIAL SCIENCE, 2024, 69 (01) :243-263
[59]   Multiview Calibrated Prototype Learning for Few-Shot Hyperspectral Image Classification [J].
Yu, Chunyan ;
Gong, Baoyu ;
Song, Meiping ;
Zhao, Enyu ;
Chang, Chein-I .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[60]   Deep Learning-Based Feature Representation and Its Application for Soft Sensor Modeling With Variable-Wise Weighted SAE [J].
Yuan, Xiaofeng ;
Huang, Biao ;
Wang, Yalin ;
Yang, Chunhua ;
Gui, Weihua .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (07) :3235-3243