Effective hyperspectral image classification based on segmented PCA and 3D-2D CNN leveraging multibranch feature fusion

被引:5
作者
Afjal, Masud Ibn [1 ,2 ]
Mondal, Md. Nazrul Islam [2 ]
Mamun, Md. Al [2 ]
机构
[1] Hajee Mohammad Danesh Sci & Technol Univ, Comp Sci & Engn, Dinajpur, Bangladesh
[2] Rajshahi Univ Engn & Technol, Comp Sci & Engn, Rajshahi, Bangladesh
关键词
Convolutional neural networks; remote sensing; hyperspectral image classification; deep learning; segmented PCA; multi-branch 3D-2D CNN; feature fusion; GRAPH CONVOLUTIONAL NETWORKS; PRINCIPAL COMPONENT ANALYSIS; THEORETIC FEATURE-SELECTION; INFORMATION;
D O I
10.1080/14498596.2024.2305119
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We present an innovative hyperspectral image (HSI) classification method addressing challenges posed by closely spaced wavelength bands. Our approach combines 3D-2D convolutional neural networks (CNNs) with multi-branch feature fusion for improved spectral-spatial feature extraction. Using segmented principal component analysis (Seg-PCA), we reduce HSIs' spectral dimensions into global and local intrinsic characteristics. The integration of 3D and 2D CNNs captures joint spectral-spatial features, while a multi-branch network extracts and merges diverse local features along the spectral dimension. Our method outperforms existing approaches, achieving remarkable accuracy of 99.27%, 100%, and 99.99% on Indian Pines, Salinas Scene, and University of Pavia datasets, respectively.
引用
收藏
页码:821 / 848
页数:28
相关论文
共 63 条
[1]  
Afjal M.I., 2022, 2022 IEEE 12 INT C E, P1
[2]   Segmentation-based linear discriminant analysis with information theoretic feature selection for hyperspectral image classification [J].
Afjal, Masud Ibn ;
Mondal, Md. Nazrul Islam ;
Al Mamun, Md. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (11) :3412-3455
[3]   A Fast and Compact 3-D CNN for Hyperspectral Image Classification [J].
Ahmad, Muhammad ;
Khan, Adil Mehmood ;
Mazzara, Manuel ;
Distefano, Salvatore ;
Ali, Mohsin ;
Sarfraz, Muhammad Shahzad .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[4]  
Aloysius N, 2017, 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), P588, DOI 10.1109/ICCSP.2017.8286426
[5]   DesU-NetAM: optimized DenseU-Net with attention mechanism for hyperspectral image classification [J].
Balaji K. ;
Nirosha V. ;
Yallamandaiah S. ;
Karthik S. ;
Prasad V.S. ;
Prathyusha G. .
International Journal of Information Technology, 2023, 15 (7) :3761-3777
[6]   Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis [J].
Bandos, Tatyana V. ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03) :862-873
[7]   3-D Deep Learning Approach for Remote Sensing Image Classification [J].
Ben Hamida, Amina ;
Benoit, Alexandre ;
Lambert, Patrick ;
Ben Amar, Chokri .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (08) :4420-4434
[8]  
Chakraborty T., 2021, ARXIV
[9]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[10]   Hyperspectral Image Classification Based on Fusing S3-PCA, 2D-SSA and Random Patch Network [J].
Chen, Huayue ;
Wang, Tingting ;
Chen, Tao ;
Deng, Wu .
REMOTE SENSING, 2023, 15 (13)