Reducing the Open-Circuit Voltage Loss of PbS Quantum Dot Solar Cells via Hybrid Ligand Exchange Treatment

被引:14
作者
Huang, Tengzuo [1 ,2 ,3 ,4 ]
Wu, Chunyan [1 ,3 ,4 ]
Yang, Jinpeng [2 ]
Hu, Pengyu [2 ]
Qian, Lei [1 ,3 ,4 ]
Sun, Tao [2 ]
Xiang, Chaoyu [1 ,3 ,4 ]
机构
[1] Qianwan Inst CNITECH, Lab Adv Nanooptoelectron Mat & Devices, Ningbo 315336, Zhejiang, Peoples R China
[2] Yunnan Univ, Energy Res Inst, Int Joint Res Ctr China Optoelect & Energy Mat, Kunming 650091, Yunnan, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Lab Adv Nanooptoelectron Mat & Devices, Ningbo 315201, Zhejiang, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Engn Res Ctr Energy Optoelect Mat &, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
solar cell; PbS CQDs; ligand exchange; hole transport layer; open-circuit voltage loss; PERFORMANCE; TRANSPORT; NANOCRYSTALS; ENHANCEMENT; LAYERS; FILMS; PCBM;
D O I
10.1021/acsami.3c16599
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The interface V-OC loss between the active layer and the hole transport layer (HTL) of lead sulfide colloidal quantum dot (PbS-CQD) solar cells is a significant factor influencing the efficiency improvement of PbS colloidal quantum dot solar cells (PbS-CQDSCs). Currently, the most advanced solar cells adopt organic P-type HTLs (PbS-EDT) via solid-state ligand exchange with 1,2-ethanedithiol (EDT) on the CQD top active layer. However, EDT is unable to altogether remove the initial ligand oleic acid from the quantum dot surface, and its high reactivity leads to cracks in the HTL film caused by volume contractions, which inevitably results in significant V-OC loss. These flaws prompted this research to develop a method involving hybrid organic ligand exchange using 3-mercaptopropionic acid (MPA) and 1,2-EDT (PbS-Hybrid) to overcome these drawbacks of V-OC loss. The results indicated that the new exchange strategy improved the quality of the HTL film and benefited from the enhanced passivation of the quantum dot surface and better alignment of energy levels, and the average V-OC of PbS-Hybrid devices is increased by approximately 25 mV compared to control devices. With the enhanced V-OC, the average power conversion efficiency (PCE) of the devices is improved by 10%, with the highest PCE reaching 13.24%.
引用
收藏
页码:915 / 923
页数:9
相关论文
共 50 条
[1]   Multiple Exciton Generation in Semiconductor Quantum Dots [J].
Beard, Matthew C. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (11) :1282-1288
[2]   Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density [J].
Bin Sun ;
Vafaie, Maral ;
Levina, Larissa ;
Wei, Mingyang ;
Dong, Yitong ;
Gao, Yajun ;
Kung, Hao Ting ;
Biondi, Margherita ;
Proppe, Andrew H. ;
Bin Chen ;
Choi, Min-Jae ;
Sagar, Laxmi Kishore ;
Voznyy, Oleksandr ;
Kelley, Shana O. ;
Laquai, Frederic ;
Lu, Zheng-Hong ;
Hoogland, Sjoerd ;
de Arguer, F. Pelayo Garcia ;
Sargent, Edward H. .
NANO LETTERS, 2020, 20 (05) :3694-3702
[3]   Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange [J].
Brown, Patrick R. ;
Kim, Donghun ;
Lunt, Richard R. ;
Zhao, Ni ;
Bawendi, Moungi G. ;
Grossman, Jeffrey C. ;
Bulovic, Vladimir .
ACS NANO, 2014, 8 (06) :5863-5872
[4]   Effect of anchoring groups on single-molecule conductance: Comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules [J].
Chen, Fang ;
Li, Xiulan ;
Hihath, Joshua ;
Huang, Zhifeng ;
Tao, Nongjian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (49) :15874-15881
[5]   Regulating Thiol Ligands of p-Type Colloidal Quantum Dots for Efficient Infrared Solar Cells [J].
Chen, Jingxuan ;
Zheng, Siyu ;
Jia, Donglin ;
Liu, Wanlu ;
Andruszkiewicz, Aneta ;
Qin, Chaochao ;
Yu, Mei ;
Liu, Jianhua ;
Johansson, Erik M. J. ;
Zhang, Xiaoliang .
ACS ENERGY LETTERS, 2021, 6 (05) :1970-1989
[6]   Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics [J].
Choi, Min-Jae ;
de Arquer, F. Pelayo Garcia ;
Proppe, Andrew H. ;
Seifitokaldani, Ali ;
Choi, Jongmin ;
Kim, Junghwan ;
Baek, Se-Woong ;
Liu, Mengxia ;
Sun, Bin ;
Biondi, Margherita ;
Scheffel, Benjamin ;
Walters, Grant ;
Nam, Dae-Hyun ;
Jo, Jea Woong ;
Ouellette, Olivier ;
Voznyy, Oleksandr ;
Hoogland, Sjoerd ;
Kelley, Shana O. ;
Jung, Yeon Sik ;
Sargent, Edward H. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]  
Chuang CHM, 2014, NAT MATER, V13, P796, DOI [10.1038/NMAT3984, 10.1038/nmat3984]
[8]   Semiconductor quantum dots: Technological progress and future challenges [J].
de Arquer, F. Pelayo Garcia ;
Talapin, Dmitri, V ;
Klimov, Victor, I ;
Arakawa, Yasuhiko ;
Bayer, Manfred ;
Sargent, Edward H. .
SCIENCE, 2021, 373 (6555) :640-+
[9]   The pH-dependent photoluminescence of colloidal CdSe/ZnS quantum dots with different organic coatings [J].
Debruyne, David ;
Deschaume, Olivier ;
Coutino-Gonzalez, Eduardo ;
Locquet, Jean-Pierre ;
Hofkens, Johan ;
Van Bael, Margriet J. ;
Bartic, Carmen .
NANOTECHNOLOGY, 2015, 26 (25)
[10]   Over 15% Efficiency PbS Quantum-Dot Solar Cells by Synergistic Effects of Three Interface Engineering: Reducing Nonradiative Recombination and Balancing Charge Carrier Extraction [J].
Ding, Chao ;
Wang, Dandan ;
Liu, Dong ;
Li, Hua ;
Li, Yusheng ;
Hayase, Shuzi ;
Sogabe, Tomah ;
Masuda, Taizo ;
Zhou, Yong ;
Yao, Yingfang ;
Zou, Zhigang ;
Wang, Ruixiang ;
Shen, Qing .
ADVANCED ENERGY MATERIALS, 2022, 12 (35)